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Abstract— This paper shows how the extended compact
genetic algorithm can be scaled using data-intensive computing
techniques such as MapReduce. Two different frameworks
(Hadoop and MongoDB) are used to deploy MapReduce im-
plementations of the compact and extended compact genetic
algorithms. Results show that both are good choices to deal
with large-scale problems as they can scale with the number of
commodity machines, as opposed to previous efforts with other
techniques that either required specialized high-performance
hardware or shared memory environments.

I. INTRODUCTION

Efficiency enhancement efforts are key for improving the
scalability and practical usage of genetic algorithms and
estimation of distribution algorithms on many real-world
problems. The extended compact genetic algorithm (eCGA)
[1], is based on a key idea that the choice of a good
probability distribution is equivalent to linkage learning.
The minimum description length (MDL) restriction penalizes
both inaccurate and complex models, thereby leading to
an optimal probability distribution. However, the model-
building algorithm based on the MDL metric used which
enable linkage learning is also a hindrance to eCGA scala-
bility. The model-building algorithm presents an asymptotic
of O(!3), where ! is the number of genes.

Recent improvements to the efficiency of eCGA model
building focus on clustering techniques to help reduce the
model building complexity and local-search hybridization
[2]. Such methodological efforts can be divided in four main
categories: Parallelization, hybridization, time continuation
and evaluation relaxation. In this paper we will focus on how
parallelization could help palliate model-building complexity.
In fact, if enough computation resources are available, the
best asymptotic time complexity would be θ(!). Another
key element in this scalability equation is the need of
eCGA to maintain a population. For instance, algorithms
like the compact genetic algorithm (CGA) [3] are able to
scale and solve billion bit optimization problems [4] thanks
to compact population representations based on probability
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distributions, getting rid of the need to maintain a population.
However, model-building mechanisms like the one used in
eCGA require that a population be maintained. Hence, when
scaling the algorithm to large problem sizes, the memory
requirements can be render the approach infeasible.

However, data richness can also be seen as an opportunity.
Data-intensive computing exploits data parallelism as a form
to facilitate scalability. Recent advances have shown that
these models like MapReduce [5] may present an alternative
approach that can help scale model-building approaches like
eCGA. Results have shown that traditional genetic algorithm
schemes, even simple estimation of distribution algorithms
like CGA, can be parallelized and scaled easily with such
techniques [6], [7], [8]. In this paper, we introduce data-
intensive computing frameworks that when applied to eCGA
can help scale its model-building algorithm to achieve the
best asymptotic time complexity.

We start by reviewing some of the traditional approaches
used in the research community to parallelize genetic algo-
rithms in Section II. Then, in Section III we present a quick
overview of data-intensive computing frameworks that we
use throughout the paper. Before introducing the proposed
parallelization of eCGA using data-intensive computing, we
present a quick overview of CGA and eCGA in Sections
IV and VI. Section V and VII present and discuss the results
achieved by using data-intensive computing technique to par-
allelize both of the previously described algorithms. Finally,
the paper concludes by evaluating the results obtained in
Section VIII and conclude in Section IX.

II. PARALLEL PROGRAMMING, GAS, AND MPI

The methodology proposed by Goldberg [9] allows a
principled design of competent GAs, which can solve hard
problems in polynomial time. The same methodology can
be used to design efficiency enhancements for GAs [10],
which can be divided in four main categories: Parallelization,
hybridization, time continuation and evaluation relaxation. A
very superficial overview would describe the role of each
of them as follows. Parallelization deals with the division
of the GA in several processors. Hybridization deals with
the integration of GAs with other search procedures. Time
continuation considers the trade-off among using a larger
population for short time or smaller population for long
time. Finally, evaluation relaxation involves with the trade-
off among having a noisy and cheap evaluation against an
accurate and expensive one.

Work on parallel GAs have been twofold. On one hand,
several parallel models have been proposed trying to take
advantage of intrinsic parallelism of the process. Models



ranging from master/slave configuration, island based mod-
els, of cellular automata inspired models [11], [12], [13]
have been quite common in the literature. Most of these
take advantage of the high-performance computing (HPC)
resources available. Models like the one proposed by Sastry,
Goldberg and Llorà [4] were able to solve billion bit variable
problems relying on a MPI-based implementation running on
supercomputers with high-speed interconnection networks.
The authors also started exploring how hardware acceleration
techniques could provide an extra boost. This trend has
gone mainstream in the last five year in the evolutionary
computation community, where researchers focus on hard-
ware accelerations techniques to help maximize the hardware
resources available [14], [15], [16], [17].

However, when solving large-scale optimization or ma-
chine learning problems using evolutionary computation
techniques, researchers have realized that the population
requirements may become infeasible if approached with
traditional high-performance computing techniques [4]. Most
models required maintaining the entire or at least a sample of
large populations during the evolutionary process. However,
the data abundance provided by such large populations have
enabled data-intensive computing techniques to become a
viable alternative parallelization scheme for evolutionary
computation techniques [18], [7], [6], [8], as we will illus-
trate in the next three sections. Moreover, such approaches
also provide three key advantages when compared to their
traditional HPC counterparts:

1) They do not require detailed knowledge of the underly-
ing hardware architecture and their complex program-
ming techniques, which are hard to debug.

2) They do not require intensive check-pointing to tolerate
failures quite common on large jobs than may run for
days.

3) They scale well on commodity clusters; usually the
efficiency of MPI techniques rely on expensive high
quality interconnection networks.

III. DATA-INTENSIVE COMPUTING USING MAPREDUCE

This section presents a quick overview of three data-
intensive frameworks that we will use or refer throughout
the rest of the paper. The first one is Hadoop1, Yahoo!’s
open source MapReduce framework. Modeled after Google’s
MapReduce paper [5], Hadoop builds on the map and
reduce primitives present in functional languages. Hadoop
relies on these two abstractions to enable the easily de-
velopment of large-scale distributed applications as long as
your application can be modeled around these two phases.
The second framework is MongoDB2, a scalable, high-
performance, open source, schema-free, document-oriented
database. Among others, MongoDB provides MapReduce
tasks as a primitive of the query interface. When documents
are stored in sharded collections (collections of documents
broken in to shards distributed across different servers),

1http://hadoop.apache.org
2http://www.mongodb.org/

Fig. 1. Basic tasks and dataflow of a MapReduce job.

MongoDB is able to run MapReduce tasks in parallel making
it an appealing alternative to Hadoop. Finally, we will
also present a quick overview of Meandre [19], which is
NCSA’s data-intensive computing infrastructure for science,
engineering, and humanities. Meandre provides a more flex-
ible programming model that allows to create complex data
flows, which could be regarded as complex and possible
iterating MapReduce stages. Meandre can also benefit of
some Hadoop tools, such as Hadoop’s distributed file system.

A. The MapReduce Model

Inspired by the map and reduce primitives present in
functional languages, Google popularized the MapReduce [5]
abstraction that enables users to easily develop large-scale
distributed applications. The associated implementation par-
allelizes large computations easily as each Map function in-
vocation is independent and uses re-execution as the primary
mechanism of fault tolerance.

In this model, the computation takes a set of input
key/value pairs, and produces a set of output key/value
pairs. The user of the MapReduce library expresses the
computation as two functions: Map and Reduce. Map, written
by the user, takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce framework
then groups together all intermediate values associated with
the same intermediate key I and passes them to the Reduce
function. The Reduce function, also written by the user,
accepts an intermediate key I and a set of values for that key.
It merges together these values to form a possibly smaller
set of values. The intermediate values are supplied to the
user’s Reduce function via an iterator. This allows the model
to handle lists of values that are too large to fit in main
memory.

Conceptually, the Map and Reduce functions supplied by



the user have the following types:

map(k1, v1) → list(k2, v2) (1)

reduce(k2, list(v2)) → list(v3) (2)

i.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore, the
intermediate keys and values are from the same domain as
the output keys and values.

The Map invocations are distributed across multiple ma-
chines by automatically partitioning the input data into a set
of M splits. The input splits can be processed in parallel
by different machines. Reduce invocations are distributed by
partitioning the intermediate key space into R pieces using a
partitioning function, which is hash(key)%R according to
the default Hadoop configuration. The number of partitions
(R) and the partitioning function are specified by the user.
The overall execution is thus orchestrated in two steps: first
all Mappers are executed in parallel, then the Reducers
process the generated key value pairs by the Reducers. A
detailed explanation of this framework is beyond the scope
of this paper and can be found elsewhere [5]. We will also
use Hadoop, Yahoo!’s open source MapReduce framework
through this paper.

B. MapReduce in MongoDB

MongoDB [20] is a scalable, high-performance, open
source, schema-free, document-oriented database. MongoDB
provides mechanisms to store, retrieve, and query data stored
as BSON documents. A BSON3 document is a binary-
encoded serialization of JSON-like documents, and, like
JSON, supports the embedding of objects and arrays within
other objects and arrays. MongoDB understands natively
objects stored as BSON and, hence it is able to access
key/values and index keys shared among documents and
nested documents. A collection groups documents that share
some common characteristic, which is similar to tables on
a traditional relational data based managements system, and
collections are grouped into a database. A MongoDB server
can handle several databases. The basic interaction with
MongoDB is via JavaScript. You can write simple snippets
of JavaScript code to create, store, and retrieve objects. A
complete description of the differences between MongoDB’s
NoSQL approach is beyond the scope of this paper and can
be found elsewhere [20].

MongoDB’s query language provides MapReduce jobs
as a primitive. Thus, MapReduce tasks execute against an
stored collection. Moreover, if the targeted collection is
a sharded one, the execution of the MapReduce task is
parallelized across the different servers that host shards of
the collection. In another words, you can easily add more
servers to a sharded MongoDB server and get the benefits of:
(1) scattering shards across machines with lower disk space
requirements, (2) replicating shards across machines for fault
tolerance, and (3) easily scale MapReduce performance by
parallel execution.

3http://www.mongodb.org/display/DOCS/BSON

The MapReduce model implemented by MongoDB
slightly differs from Hadoop’s implementation. The user can
provide three different functions to a MapReduce task:

map(doci) → list(kj , dock)
reduce(ki, list(docj)) → dock

finalize(ki, list(docj)) → dock

the input keys and documents are drawn from a different do-
main than the output keys and values as done in the Hadoop
implementation. The emitted keys/value pairs emitted on the
task are stored and indexed on a temporary collection than
then is used as the input of the reduce step. A key difference
between the reduce operation in MongoDB is that the user-
supplied function must be idempotent.

reduce(k, [reduce(k, v)]) = reduce(k, v)|∀k, v

MongoDB may also issue multiple calls to the reduce
function with a subset of the values available for the key
to minimize the memory footprint. This technique is widely
used when on MapReduce job against sharded collections.
MongoDB also allows the user to supply a finalize function,
that basically behaves as Hadoop reduce function. If a user
provides a finalize function, MongoDB guarantees that it will
only invoke this function only once for each key providing
all the emitted values during the map step, which exhibits
the same behavior as Hadoop’s reduce function.

C. Data-Intensive Flow Computing with Meandre

Meandre [19] is a semantic-enabled web-driven, dataflow
execution environment. It provides the machinery for assem-
bling and executing data flows. Flows are software applica-
tions composed by components that process data. Each flow
represents as a directed multigraph of executable compo-
nents, nodes, which are linked through their input and output
ports. Based on the inputs, properties, and its internal state,
an executable component may produce output data. Meandre
also provides component and flow publishing capabilities
enabling users to assemble a repository of components by
reusing and sharing. Users can discover and reuse compo-
nents and flows previously published by other researchers.
It is important to mention here, that component and flow
can act as self-contained elements. Other approaches like
Chimera still rely on external information [21]. Meandre
builds on three main concepts: (1) dataflow-driven execution,
(2) semantic-web metadata manipulation, and (3) metadata
publishing. A detailed description of the Meandre data-
intensive computing architecture is beyond the scope of this
paper and can be found elsewhere [19].

The main difference between Meandre and the Hadoop and
MongDB approaches relies on the data-driven execution na-
ture of Meandre. Components with input and output ports can
be connected to describe a complex task, commonly referred
as flow. Dataflow execution engines provide a scheduler that



determines the firing (execution) sequence of components4.
Due to its different approach, in the rest of this paper we will
review some previous results obtained using Meandre [6],
[8], but will mainly focus on MapReduce results obtained
using Hadoop and MongoDB.

IV. THE COMPACT GENETIC ALGORITHM

The compact genetic algorithm [3] is one of the simplest
estimation distribution algorithms (EDAs) [22], [23]. Similar
to other EDAs, CGA replaces traditional variation operators
of genetic algorithms by building a probabilistic model of
promising solutions and sampling the model to generate
new candidate solutions. The probabilistic model used to
represent the population is a vector of probabilities, and
therefore implicitly assumes each gene (or variable) to be
independent of the other. Specifically, each element in the
vector represents the proportion of ones (and consequently
zeros) in each gene position. The probability vectors are used
to guide further search by generating new candidate solutions
variable by variable according to the frequency values.

The compact genetic algorithm consists of the following
steps:

1) Initialization: As in simple GAs, where the population
is usually initialized with random individuals, in cGA
we start with a probability vector where the probabili-
ties are initially set to 0.5. However, other initialization
procedures can also be used in a straightforward man-
ner.

2) Model sampling: We generate two candidate solutions
by sampling the probability vector. The model sam-
pling procedure is equivalent to uniform crossover in
simple GAs.

3) Evaluation: The fitness or the quality-measure of the
individuals are computed.

4) Selection: Like traditional genetic algorithms, cGA is a
selectionist scheme, because only the better individual
is permitted to influence the subsequent generation of
candidate solutions. The key idea is that a “survival-of-
the-fittest” mechanism is used to bias the generation of
new individuals. We usually use tournament selection
[24] in cGA.

5) Probabilistic model update: After selection, the propor-
tion of winning alleles is increased by 1/n. Note that
only the probabilities of those genes that are different
between the two competitors are updated. That is,

pt+1
xi

=






pt
xi

+ 1/n If xw,i #= xc,i and xw,i = 1,
pt

xi
− 1/n If xw,i #= xc,i and xw,i = 0,

pt
xi

Otherwise.

Where, xw,i is the ith gene of the winning chromo-
some, xc,i is the ith gene of the competing chromo-
some, and pt

xi
is the ith element of the probability

4Meandre uses a decentralized scheduling policy designed to maximize
the use of multicore architectures. Also groups of components can be placed
across different machines and hence also scale by distributed execution.
Meandre also allows works with processes that require directed cyclic
graphs, thus extending beyond the traditional MapReduce directed acyclic
graphs.

Fig. 2. CGA results obtained using MongoDB.

vector, representing the proportion of ith gene being
one at generation t. This updating procedure of CGA
is equivalent to the behavior of a GA with a population
size of n and steady-state binary tournament selection.

6) Repeat steps 2–5 until one or more termination criteria
are met.

The probabilistic model of CGA is similar to those used in
population-based incremental learning (PBIL) [25], [26] and
the univariate marginal distribution algorithm (UMDA) [27],
[28]. However, unlike PBIL and UMDA, CGA can simulate
a genetic algorithm with a given population size. That is,
unlike the PBIL and UMDA, CGA modifies the probability
vector so that there is direct correspondence between the
population that is represented by the probability vector and
the probability vector itself. Instead of shifting the vector
components proportionally to the distance from either 0 or
1, each component of the vector is updated by shifting its
value by the contribution of a single individual to the total
frequency assuming a particular population size.

V. MAPREDUCING CGA

CGA has been a main candidate for parallelization and
large-scale optimization because of its small memory foot-
print [4] mainly using MPI techniques. Previous work has
also shown that Hadoop and Meandre versions of CGA could
be developed and scaled easily [6], [7], [8]. We revisit them
and also provide a version build on MongoDB to help finalize
the viability argument of data-intensive computing as a useful
tool for evolutionary computation.

Previous results [7], [6], [8] showed compelling arguments
in favor of the new path data-intensive technologies offer.
A recent newcomer in this arena is MongoDB [20]. As
introduced in section III, MongoDB scales by sharding
document collections, hence when issuing a MapReduce task
on sharded collections the execution is parallelized based on



the shards available. The implementation of CGA on top
of MongoDB clearly resembles the one implemented using
Hadoop. The CGA probability vector was divided on disjoint,
equally sized, model fragments, an array of 20 probabilities.
Each of these arrays was part of a MongoDB document
via a key g. Each document also contained the unique
fragment identifier c and the overall population size value
ps. Far from being an exhaustive experimentation, we only
wanted to validate that MongoDB and its lighter approach
to MapReduce when compared to Hadoop. They follow the
same performance trends as results previously obtained [7],
[6], [8].

Figure 2 presents the results obtained running one iteration
of MongoDB’s CGA implementation. A constant load per
shard, obtained by increasing the problem size, was main-
tained as we increased the number of processors used. As
we increased the problem size (6.5M, 25M, 50M, 75M, and
100M bits) more shards (1,4,8,12 and 14 processors) were
added. Under this assumptions, MongoDB should maintain
a constant iteration time, as shown in CGA Hadoop’s imple-
mentation. Figure 2 shows how MongoDB, under constant
shard load, was able to deliver similar times per iteration.
However, when comparing these results to Hadoop ones,
MongoDB was not as stable. MongoDB sharding imple-
mentation is still on an alpha stage [20] and the consistent
hashing mechanics used require a fair amount of documents
to evenly distribute them across all the available shards.
When inspecting MongoDB document distribution based on
key range partitioning, significant fluctuations existed on the
number of chunks assigned to shards. Some over allocated,
some under allocated, which directly translated to the time
fluctuations identified.

VI. THE EXTENDED COMPACT GENETIC ALGORITHM

The extended compact genetic algorithm (eCGA) [1], is
based on a key idea that the choice of a good probability dis-
tribution is equivalent to linkage learning. The measure of a
good distribution is quantified based on minimum description
length (MDL) models. The key concept behind MDL models
is that given all things are equal, simpler distributions are
better than the complex ones. The MDL restriction penalizes
both inaccurate and complex models, thereby leading to an
optimal probability distribution. The probability distribution
used in eCGA is a class of probability models known as
marginal product models (MPMs). MPMs are formed as a
product of marginal distributions on a partition of the genes.
MPMs also facilitate a direct linkage map with each partition
separating tightly linked genes.

The eCGA, later extended to deal with n-ary alphabets in
χ-eCGA [29], can be algorithmically outlined as follows:

1) Initialize the population with random individuals.
2) Evaluate the fitness value of the individuals.
3) Select good solutions by using s-wise tournament

selection without replacement [24].
4) Build the probabilistic model: In χ-eCGA, both the

structure of the model as well as the parameters of

the models are searched. A greedy search is used to
search for the model of the selected individuals in the
population.

5) Create new individuals by sampling the probabilistic
model.

6) Evaluate the fitness value of all offspring.
7) Repeat steps 3–6 until some convergence criteria are

met.
Two things need further explanation: (1) the identification of
MPM using MDL, and (2) the creation of a new population
based on MPM.

The identification of MPM in every generation is formu-
lated as a constrained optimization problem,

Minimize Cm + Cp (3)

Subject to
χki ≤ n ∀i ∈ [1,m] (4)

where χ is the alphabet cardinality—χ = 2 for the binary
strings—Cm is the model complexity which represents the
cost of a complex model and is given by

Cm = logχ(n + 1)
m∑

i=1

(
χki − 1

)
(5)

and Cp is the compressed population complexity which
represents the cost of using a simple model as against a
complex one and is evaluated as

Cp =
m∑

i=1

χki∑

j=1

Nij logχ

(
n

Nij

)
(6)

where m in the equations represent the number of BBs,
ki is the length of BB i ∈ [1,m], and Nij is the number
of chromosomes in the current population possessing bit-
sequence j ∈ [1, χki ]5 for BB i. The constraint (Equation 4)
arises due to finite population size.

The greedy search heuristic used in χ-eCGA starts with a
simplest model assuming all the variables to be independent
and sequentially merges subsets until the MDL metric no
longer improves. Once the model is built and the marginal
probabilities are computed, a new population is generated
based on the optimal MPM as follows, population of size
n(1 − pc) where pc is the crossover probability, is filled by
the best individuals in the current population. The rest n · pc

individuals are generated by randomly choosing subsets from
the current individuals according to the probabilities of the
subsets as calculated in the model.

One of the critical parameters that determines the success
of eCGA is the population size. Analytical models have
been developed for predicting the population-sizing and
the scalability of eCGA [30]. The models predict that the
population size required to solve a problem with m building
blocks of size k with a failure rate of α = 1/m is given by

n ∝ χk

(
σ2

BB

d2

)
m log m, (7)

5Note that a BB of length k has χk possible sequences where the first
sequence denotes be 00· · · 0 and the last sequence (χ−1)(χ−1) · · · (χ−1)



where n is the population size, χ is the alphabet cardinality
(here, χ = 3), k is the building block size, σ2

BB
d2 is the noise-

to-signal ratio [31], and m is the number of building blocks.
For the experiments presented in this paper we used k =
|a|+1 (where |a| is the number of address inputs), σ2

BB
d2 =1.5,

and m = #
|I| (where ! is the rule size).

VII. MAPREDUCING ECGA

All the steps in eCGA as described in the previous
section, except step 4 are very similar to a simple genetic
algorithm. We modify our technique of scaling simple ge-
netic algorithms by breaking the eCGA algorithm into two
MapReduces, which also inspired by our previous work on
eCGA using Meandre [7]. The first MapReduce computes
the fitness of the individuals in the Map phase and per-
forms a tournament selection in the Reduce phase. After
this MapReduce, we develop a MapReduce algorithm for
building the model. After this model is built, we perform
a second MapReduce to perform the crossover according to
the model that has been built.

The model building is an important step in eCGA and can
become the bottleneck if implemented sequentially. However,
it is also difficult to parallelize this step because of the inter-
dependence of these steps. We split the population among
different mappers. Each mapper could calculate the local
Cm and Cp values. However, the global values cannot be
calculated from these local values because of the operations
involved in their calculation. Specifically, it is difficult to
express log(x+y) as any independent function h(f(x), g(y))
where h, f and g can be any arbitrary functions.

We could partition the different building blocks among
multiple machines. However, in this case, every mapper
would have to read in the entire population. As the required
population scales as n log n, where n is the number of
variables; this would be infeasible.

We partition the population among multiple mappers,
which count the marginal probability of each building block
in the individuals it processes. Then we have a single reducer
which aggregates these marginal probabilities and computes
the global Cm and Cp values. As a part of the greedy
heuristic for building the model, the reducer picks the best
building blocks to merge and sends the merged partition to
the mappers. Since, we have a single reducer, we try to
offload as much work as possible to the multiple mappers.
Hence, the mappers also pre-compute the local Cm and
Cp values of every possible two-way merge of the building
blocks as shown in Algorithm 1.

We decided to partition the individuals among multi-
ple mappers. These mappers compute the marginal prob-
abilities of each building block according to the COM-
PUTEMARGINALPROBABILITIES function and also compute
the marginal probabilities for every possible pair-wise merge
of the building blocks and emit these values to the reducer.
We use a single to reducer to aggregate all these marginal
probabilities for each building block. Then, it uses the
PICKANDMERGE function to go over pair-wise merge and

Algorithm 1 Building the model in eCGA:
Initially, each bit is a separate building block b,
P[b] ← 0, ∀ building blocks b

COMPUTEMARGINALPROBABILITES:
// Compute the marginal probability of building blocks
for all building blocks b do

for all individuals i do
value ← decimal value of b in i
P(b)[value] ← P(b)[value] + 1

end for
end for

PICKANDMERGE:
// Find the best merge of building blocks
bi ← −1, bj ← −1, bcomp ← 1
while bcomp > 0 do

bcomp ← −1
for i ← 0 to number of building blocks do

for j ← i + 1 to number of building blocks do
ci ← Combined complexity of bi

cj ← Combined complexity of bj

cij ← Combined complexity of blocks bi

and bj combined together
δij ← ci + cj − cij

if δij ≥ bcomp then
bi ← i, bj ← j, bcomp ← δij

end if
end for

end for
if bcomp #= −1 then

// Perform the merge and recompute
Merge building blocks i and j
Recompute the marginal probability of each
building block

end if
end while

pick the best possible merge. It writes this changed building
block index to a file, which is later read by the next round
of mappers. If the compressed value cannot be decreased,
the model building is complete and the client starts the next
MapReduce.

VIII. EVALUATION

We performed our experiments on 62 nodes from the
Cloud Computing Testbed (CCT)6. The nodes are connected
together with a Gigabit ethernet switch running 64 bit Cent
OS 5.4 operating system. Each node has dual Intel Quad
cores, 16GB RAM and 2TB hard disks. A single node was
configured to be the JobTracker, another one was configured
as the NameNode and the other 60 nodes were used as
slaves. The replication factor of the distributed file system
was set to 3 and the default chunksize was 128MB. The

6http://cloud.cs.illinois.edu
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Fig. 3. Effect of caching on the iteration time

number of Mappers and Reducers per node was set to 6 and
2 respectively, in order to utilize all the 8 cores on each node.

We tested our eCGA implementation on the MK deceptive
trap function [9], where k = 4 and d = 0.25. We performed
selection of the individuals using using tournament selection
without replacement with a window size of 5.

A. Convergence

In order to ensure the correctness of our parallel imple-
mentation of the eCGA algorithm, we ran an experiment on
a problem with 16 bit variables and it converged in three
iterations, achieving the best possible fitness.

B. Caching

In this experiment, we measure the benefit of caching
in the model building phase of the eCGA algorithm. In
the first iteration, we compute the marginal probabilities of
each building block in the map phase and the the marginal
probabilities of each pair-wise combination of the building
block. If we don’t cache these marginal probabilities, they are
computed in every iteration of the model building process.
This is demonstrated in the “No-Cache” line in Figure 3. We
can cache most of this information for the next iteration, as
only the merged building block will have different marginal
probabilities. This results in upto 80% lesser time per itera-
tion, as is demonstrated in the ”File-cache” line in the same
figure.

C. Scaling the model building with problem size

In this experiment, we analyze the average time per
iteration in the model building process for different problem
sizes. Our results show that for problem sizes upto 128,
the start-up overhead of the MapReduce results in similar
execution times for the no-cache and file-cache versions as
shown in Figure 4. The difference becomes more prominent
for larger problem sizes. Our implementation scales up to
1024 bit variable problems. We found that beyond this value,
the memory overhead of maintaining marginal probabilities
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for each pair-wise merge of building blocks becomes the
bottleneck.

D. Scaling the model building with number of mappers

This experiment shows how our implementation scales
with increasing number of mappers. Figure 5 shows the aver-
age time per iterations as the number of mappers is increased.
When the number of mappers is small, the mappers have
too much load and the time per iteration is high. As this
work is distributed among more machines, as the number of
mappers is increased, the time decreases. However, as the
number of mappers is increased beyond a limit (120), then
the overhead of reading from so many mappers by the single
reducer increases and the time increases.

IX. CONCLUSIONS

Regardless of the implementation—Hadoop, MongoDB or
Meandre—this paper has shown that data-intensive comput-
ing can play a principal role in the scalability of estimation of
distribution algorithms. Exploiting the massive data richness
available on population-based methods as eCGA, or even



on compact memory models like CGA, has shown that can
help scale as long as proper resource provisioning is avail-
able. Also, enhancement techniques based on computation
caching has shown that they can greatly speed up eCGA
model building, as they also do on the original sequential
implementations.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable feedback. This research was funded, in part, by NSF
IIS Grant #0841765. The views expressed are those of the
authors only.

REFERENCES

[1] G. R. Harik, F. G. Lobo, and K. Sastry, “Linkage learning via
probabilistic modeling in the ECGA,” in Scalable Optimization via
Probabilistic Modeling: From Algorithms to Applications (M. Pelikan,
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