
MITHRA: Multiple data Independent Tasks on

a Heterogeneous Resource Architecture

Reza Farivar, Abhishek Verma, Ellick M. Chan, Roy H. Campbell

Department of Computer Science

University of Illinois at Urbana-Champaign

201 N Goodwin Ave, Urbana, IL 61801-2302
{farivar2, verma7, emchan, rhc}@illinois.edu

Abstract—With the advent of high-performance COTS
clusters, there is a need for a simple, scalable and fault-
tolerant parallel programming and execution paradigm.
In this paper, we show that the popular MapReduce
programming model can be utilized to solve many in-
teresting scientific simulation problems with much higher
performance than regular cluster computers by leveraging
GPGPU accelerators in cluster nodes. We use the Massive
Unordered Distributed (MUD) formalism and establish a
one-to-one correspondence between it and general Monte
Carlo simulation methods. Our architecture, MITHRA,
leverages NVIDIA CUDA technology along with Apache
Hadoop to produce scalable performance gains using the
MapReduce programming model. The evaluation of our
proposed architecture using the Black Scholes option pric-
ing model shows that a MITHRA cluster of 4 GPUs can
outperform a regular cluster of 62 nodes, achieving a
speedup of about 254 times in our testbed, while providing
scalable near linear performance with additional nodes.

I. INTRODUCTION

The availability of fast commodity GPUs has spawned

new interest in using their capabilities to accelerate

the state of the art in scientific computing – large-

scale computational problems can be solved on desktops

rather than using small clusters. Although this inno-

vation has made strides towards bringing cluster-level

computational power to the desktop, the approach thus

far has not been shown to scale. In this paper, we

introduce a methodology to leverage the power offered

by these GPUs and the scalability of MapReduce[1] clus-

ters. MapReduce is a programming idiom developed by

Google for large-scale parallel computations. Map and

Reduce are derived from functional programming where

the “Map” function maps an input value to a list of in-

termediate key/value pairs Map(k1, v2) → List(k2, v2),
and Reduce produces a collection of values for pairs with

the same key Reduce(k2, list(v2)) → list(v3).
We perform a study on Hadoop[2] to quantify the

benefits of our approach and achieve a 254x speed up in

our testbed. Our studies using several test benchmarks

show that there exists an overhead when executing

scientific computing algorithms on Hadoop clusters. We

traced the observed overhead back to the use of hard

disks to store the intermediate key/value pairs created

by the mapper tasks and the involved network overhead

as dictated by the Hadoop design.

Scientific computing problems are typically bound

by available computing cycles rather than I/O activity,

in contrast to data processing tasks typically found

in search engine companies. MapReduce and Hadoop

perform well in I/O-bound problems, for example word

count, inverse indexing and distributed grep, where sev-

eral simple operations are repeatedly performed over

large data sets. The data in these applications is so large

that it must be stored on hard disks. Moreover, there

is not much reuse of the data, as few operations are

performed on each data block. Thus, there does not exist

much locality that can be exploited and there would

not be any advantage of working with data explicitly

in memory. Even though this might be an over sim-

plification, it is not far from typical use cases. Given

that scientific computing does exhibit locality in many

cases, it would be advantageous to provide provisions in

MapReduce frameworks to support in memory storage

of intermediate key/value pairs.

In 2004, Philipp Colella described seven scientific

computing core kernels, the so-called seven dwarfs of

parallel programming[3], that can represent a majority of

the scientific computing algorithms. These “dwarfs” in-

clude the following algorithm classes: Dense Linear Al-

gebra, Sparse Linear Algebra, Spectral Methods (FFT),

N-body methods, Structured Grids, Unstructured Grids

and Monte Carlo. The Monte Carlo method is often used

when the model is complex, nonlinear, or involves more

than just a couple uncertain parameters[4]. Monte Carlo

methods are versatile enough to cover a wide problem

domain including the simulation of galactic formation

to business risk analysis to solving systems of linear

equations[5]. In this paper, we show that the last problem

class can map very well onto a cluster of computers with

GPUs, programmed using the MapReduce programming

model. From a theoretical point of view, the Monte

Carlo dwarf is equivalent to the MapReduce model.

However, in practice, one often encounters secondary

effects which might adversely affect performance on

different architectures. MapReduce, as discussed in this

paper, can readily be deployed on a commodity cluster of

workstation-class machines sporting moderately priced

GPU cards. From our experiments, we demonstrate that

this architecture can perform very well on processing-

intensive Monte Carlo jobs. An important factor in how

good a Monte Carlo class problem can be mapped to

a cluster of GPU machines is the degree of associa-

tivity and commutativity of the reduction function. In

Section II, we elaborate further on these properties.

The rest of this paper is organized as follows: Sec-

tion II explores the mathematical properties of MapRe-

duce and MUD algorithms and show a direct corre-

spondence with the Monte Carlo method in Section III.

Section IV introduces the MITHRA architecture and

Section V evaluates the performance of our work with

respect to the Black Scholes Option Pricing model and

describes how we have mapped the various portions of

this model to a Monte Carlo simulation over multiple im-

plementations on stand alone machines and clusters. We

then compare the performance results against MITHRA,

our implementation of MapReduce running on CUDA

technology linked together with MapReduce. Section VI

explores related work and we conclude with Section VII.

II. MAPREDUCE, MUD AND MONTE CARLO

In this section, we study the mathematical properties

of MapReduce in the context of Monte Carlo simula-

tions. We first introduce MapReduce, then we define the

associated operations mathematically and show that the

corresponding parts are also present in Monte Carlo sim-

ulations, thus establishing a direct relationship between

the two methods.

A. Theoretical foundations of MapReduce model

The MapReduce framework has shown considerable

prowess in the area of data-intensive computing and

shows promise in processor-intensive scientific com-

puting as evidenced by the application of the Monte

Carlo dwarf. Our work formally shows the relationship

between MapReduce and Monte Carlo.

In this paper we borrow the formalism provided in [6],

which introduced a simple formal model for the class of

algorithms that can be programmed with the MapRe-

duce model, referred to as MUD (Massive Unordered

Distributed) algorithms, with slight modifications.

A MUD algorithm is formally defined as a 6-tuple

mathematical structure m = (Φ,⊕, η,Σ, (K,V),Γ).
Φ,⊕ and η are functions that the framework programmer

provides; Σ, (K,V) and Γ are sets acting as the domain

and image sets of the former functions. Members of the

(K,V) set are tuples of the form (ki, vi).
The function Φ : Σ → (K,V) can map an input

item σ from its domain set Σ to a list of (key, value)
tuples, where the list can contain 0 or more items. The

Φ function corresponds to the “map” function written

in Google’s MapReduce framework or Hadoop, and

(K,V), being the image set of Φ, is the intermediate

key/value domain.

The aggregator ⊕ : (K,V) × (K,V) → (K,V) is a

binary operator that maps two items from the set (K,V)
to a single item as follows: (k, v1) ⊕ (k, v2) → (k, v3).
The ⊕ aggregator therefore “reduces” the intermediate

key/value pairs to a single key/value pair for each key.

Notice that we do not limit the ⊕ aggregator to be

commutative and associative, unlike the formalism in list

homomorphisms for the monoid used for reduction[7].

However, the output can depend on the order in which

⊕ is applied.

Let T be an arbitrary binary tree with n leaves. We use

mT (x) to denote the (k, v) ∈ (K,V) that results from

applying ⊕ to the sequence Φ(x1), ...,Φ(xn) along the

topology of T with an arbitrary permutation of these

inputs as its leaves. Notice that T is not part of the

algorithm definition, but rather, the algorithm designer

needs to make sure that mT (x) is independent of T . This

is implied if ⊕ is associative and commutative; however,

this is not necessary.

The optional post-processing operator η : (K,V) → Γ
produces the final output. The overall output of the

MUD algorithm is then η(mT (x)), which is a function

Σn → Γ, where Σn means the Φ function is applied on

n members of the Σ set. We say that a MUD algorithm

computes a function f if η(m(·)) = f for all trees T,

in other words, the intermediate key/value pair ordering

for each key would not change the outcome of the

computation.

B. Parallelism in MUD formalism

The main advantage of the MUD formalism is the

broad range of problems that can be described and

modeled using it, and the potential for parallelism. There

are four distinct parallelism opportunities in a MUD

algorithm, which are as follows:

1) Input data set creation

2) Data independent execution of the Φ function

3) Intra-key parallelism of ⊕

4) Inter-key parallelism of ⊕

2

We defined the input values of a MUD algorithm to be

members of the set Σ. However, in real applications, its

members should either be created at run-time, streamed

into the machine executing the algorithm or stored on

the hard disks distributed across the nodes of a cluster.

Each of these possible cases allow for a parallelism and

hence better performance. Considering the typical I/O

latency that dominates the latter two classes, the best

parallelism opportunities can be found when the data

can be generated right before consumption. It should be

noted that the input data set creation can also be another

MUD algorithm, starting with a simpler input data set

(for example constant values).

The second class of parallelism is derived from the

definition of the Φ function. Note that the input to each

evaluation of Φ is an independent, single member of Σ
(Note that each σ ∈ Σ can be a vector of values). There-

fore, there is no dependency among multiple executions

of Φ, and it can be parallelized among whatever number

of processing elements available on the physical machine

executing the algorithm.

The latter two types of parallelism are application

dependent, contingent on the problem being solved and

the mathematical properties of ⊕. Inter-key parallelism

can be used when the programmer uses multiple keys

in the intermediate key/value pairs. Recalling from the

definition of ⊕ function, (k, v1) ⊕ (k, v2) → (k, v3).
Therefore ⊕ works on multiple values of key/value pairs

with the same key, and generates another key/value pair

with that key. If the programmer defines the program

in such a way to have multiple keys, each execution of

⊕ is limited to the key/values with a single key. This

parallelism can be used to gain performance in a cluster

setting even if there is no intra-key parallelism to be

found. A simple yet effective approach would be to have

the same amount of keys as the nodes in the cluster, and

distributing the total members of Σ among them with

different keys.

The last type of parallelism potential, intra-key paral-

lelism, can be exploited if the ⊕ aggregator is associative

and commutative. In this case, the evaluation of ⊕ on

a set of key/value pairs (with the same key) can be

performed as a binary tree reduction. This operation can

therefore theoretically be finished in O(log(n)) time, if

the number of processing elements is at least n
2

. If the

number of processing elements is less than that (k < n
2

),

the dominant execution time will be the time to evaluate

⊕ function for pairs of leaves n
2

times, which can be

parallelized across k processing elements. Therefore, the

execution time can be reduced to O(n
2·k

).

Sometimes, even if the ⊕ aggregator is not commu-

tative and associative, one can decompose it into the

composition of two functions: one that is associative and

commutative, and one that is not. Then, it becomes pos-

sible to integrate the non-commutative or non-associative

part with the η post processing function, and therefore

change ⊕ into a well-behaved binary operator. As an

example, consider the mean aggregator ∗ as a∗b = a+b
2

.

We know that this function is not associative, since

(a ∗ b) ∗ c =
a+b

2
+c

2
6=

a+
b+c

2

2
= a ∗ (b ∗ c). However,

considering the distributivity property of the division

operator, we can decompose the averaging function and

leave the division for the last step, performing it in the

η(·) function.

III. MONTE CARLO SIMULATION

Monte Carlo methods can be loosely considered sta-

tistical numerical simulation methods where sequences

of random numbers are used to perform the simulation.

These statistical simulations methods differ from conven-

tional numerical discretization methods which are used

to analyze ordinary or partial differential equations that

model physical or mathematical systems[8].

Monte Carlo simulation requires the system to be

either described by probability distribution functions or a

parametric model. Informally, this means that any imple-

mentation of a Monte Carlo needs to create volumes of

high quality random numbers and use these numbers as

inputs to a parametric model of the system. Simulations

are performed over many trials and the desired result is

filtered through an aggregation function which combines

the output of the trials. Typically, one would like to

use the average and variance functions to perform this

aggregation and the number of samples is chosen to

achieve a given accuracy level of the simulation.

The following steps define the required components

of a typical Monte Carlo simulation[4]:

1) Create a parametric model, y = f(x1, x2, ..., xq)
2) Generate a set of random inputs, xi1, xi2, ..., xiq

3) Evaluate the model - and store the results as yi

4) Repeat - steps 2 and 3 for i = 1 to n
5) Analyze the results - using histograms, summary

statistics, etc.

6) Error estimation - an estimate of the statistical

error (variance) as a function of the number of

trials and other quantities can be determined as

part of this step.

After the random trials are complete, the results must

be aggregated over a combiner function to produce the

desired result for the particular problem. However, the

essence of the Monte Carlo method is the use of random

3

sampling techniques to approximate the solution of a

complex problem[8].

A. Monte Carlo simulation as a MUD algorithm

The first step of the Monte Carlo algorithm described

in the previous subsection is typically done in the design

stage, and does not correspond to a certain algorithmic

step. The important thing to note however, is that the

function f has a limited set of arguments, x1 to xn,

and the input data set of each trial is independent

of other trials. Described as a MUD algorithm, this

application and domain specific function will form the

function Φ. The next step of the typical Monte Carlo

algorithm requires an efficient method of creating n · q
random, psuedo-random or quasi-random numbers, in

other words creating the Σ set. Formally, each σ ∈ Σ
is a vector of q elements: σ = (x1, x2, ..., xn), and Σ is

the set of all random vectors of size q.

The third and fourth steps of the Monte Carlo appli-

cation are about evaluating the model. In other words,

this is where the Φ function is applied in parallel to

all the random input vectors. Recalling that in a Monte

Carlo simulation all of the trials will contribute equally

to the final summary statistic values of interest, and

hence the requirement of considering all of the trials

in calculating the final analysis results, we can simply

use the same key for all the key/values pairs generated

here in a MUD model. Formally, Φ(σi) = (k, vi). It

should be noted that the MUD formalism allows to

create a list of key/value pairs by Φ, but the typical

Monte Carlo algorithm uses each input random vector

once to create a single value. Also note that the input

values to each round of function evaluation, conforming

to MUD formalism requirements, are independent and

thus allowing the function evaluations to be performed

in parallel.

The final step of the Monte Carlo simulation al-

gorithms involves applying summary statistics to the

n evaluated trials of the function Φ. Since in the

previous step, all of the intermediate key/value pairs

were generated with a single key, there is no intra key

parallelism. However, many of the summary statistics

functions are either associative and commutative, or can

be decomposed into two functions, Φ and η so that Φ
captures the main functionality while being associative

and commutative, and η function which is not com-

mutative or associative, performing the final operation.

Examples of such functions include mean and variance

calculation. Therefore, the summary statistics functions

can utilize the inter-key parallelism of a MUD algorithm

as mentioned earlier.

Fig. 1. Architecture

IV. MITHRA ARCHITECTURE

MITHRA is designed to excel at executing massive,

data independent computing tasks. We leverage hetero-

geneous computing resources in the architecture de-

sign. In other words, the “correct” computing resources

for each phase of a MUD algorithm can be different,

therefore the potential of leveraging different hardware

classes. The MITHRA architecture takes the mathemat-

ical formalism described in previous sections and reifies

the results into an efficient organization of hardware to

exploit the properties exposed by our formalism. Specif-

ically, we leverage the four optimizations mentioned

in SubSection II-B. In this section, we describe the

architecture in detail and explain how it achieves the

parallelism goals set out earlier.

A. Design

Clusters of GPU have been utilized in the recent years

to solve different classes of problems as discussed in

Section VI. Similarly, MapReduce or MUD algorithms

have been used for both massive log analysis and to

a lesser extent for scientific computing. The novelty

of MITHRA, however, is the adoption of the MUD

formalism to model a broad range of scientific com-

puting problems, and adapting it to run on a low cost

commodity cluster of computers. In its basic design,

MITHRA is a cluster of COTS computing nodes. Each

node contains a mid-range CPU and is connected to

other nodes through a gigabit-class ethernet network.

Graphics Processing Cards (GPUs) installed on each

processing node make MITHRA suitable for running

MUD algorithms.

Figure 1 depicts the architecture of MITHRA. The

MITHRA framework is based on the open source

Hadoop project, which is an implementation of Google

MapReduce. It inherits the merits of fault tolerance

and scalability from Hadoop and speed from GPUs. It

4

should be noted that in a cluster of COTS components,

the probability of component failures is considerably

higher than a cluster of specialized high performance

and highly reliable components. However, the adoption

of MapReduce programming model implies software

fault tolerance features that guarantee the continued

execution of computation jobs even under less than ideal

conditions, without the programmer having to deal with

them.

The Map function in MITHRA is designed as a two

stage process. The first phase makes use of the Hadoop

Map function. The Hadoop framework distributes the

user supplied map function across the cluster. However,

the main functionality of the the Φ function in the

MUD formalism is not programmed in the Hadoop Map.

Hadoop’s Map merely acts as a distribution mechanism

for the Φ workload across the nodes of the clusters.

The Φ function in a MUD algorithm, being data

independent in its multiple evaluations on its input data

set Σ, can be performed on GPUs. This is the second

phase of the Map function design in MITHRA, in which

the programmer writes a CUDA kernel to work on one

σ ∈ Σ. In fact, the data independence property of the Φ
function in the MUD formalism is similar and matches

the data-independent compute intensive SIMD[9] kernel

model of CUDA[10]. Unlike a traditional Map function

in the MapReduce model, MITHRA does not promote

having k Maps with each Map evaluating the Φ function
N
k

times, where N is the number of data items in Σ and

k the number of nodes in the cluster. Instead, the map

function written in CUDA corresponds directly to the

function Φ, working on a single item from Σ.

The Hadoop framework distributes Σ among the nodes

of the cluster. The Hadoop map task divides up the

amount of data determined to be processed on that node

to chunks of data small enough to fit in the GPU memory

(typically 64MB to 256MB in our implementation). It

then loads the data in the GPU memory and calls the

CUDA kernel.

The next part of the framework involves intermediate

key/value management. Focusing on the Monte Carlo

simulation class of problems, we did not need to use

more than a single key for the intermediate key/value

pairs, therefore the implementation of the key/value

management scheme is not completely general. As this is

an important feature for the application to more general

problems, it is one of our first future work milestones.

In our current implementation, after the execution of

the Map functions, the intermediate key/value pairs are

assumed to have been grouped by the key.

The last phase of a MUD algorithm is the application

of the ⊕ aggregator on all the key/value pairs with the

same key, which in a Monte Carlo simulation means all

of the intermediate values across the cluster nodes. In

a Monte Carlo simulation, the Φ function calculates the

mean and variance of the trial runs of φ as indicator sum-

mary statistics values. As discussed earlier, even though

these functions are not associative and commutative,

they can be decomposed into separate functions, mostly

because the division operator used in mean and variance

is distributive. Therefore, the reduction aggregator ⊕

can be applied locally and the pre-final values can be

sent to the head node for the final round of ⊕ and η(·)
application.

B. Practical implications of adopting MUD program-

ming model on MITHRA

Recalling the formalism presented in Section II and

the discussion of the inherent parallelism in MUD al-

gorithms, this subsection shows how each of the four

parallelism opportunities can be exploited for better

performance in MITHRA. We formally show that all

Monte Carlo simulations can be performed in an efficient

manner in our MITHRA architecture. Steps of the Monte

Carlo algorithm correspond to a phase of the MUD

model, or match an inherent parallelism opportunity of

MUD.

1) Input Data Set: The input data set can either be

pre-stored and distributed on hard disks of the individual

machines in the cluster, can be streamed in from the

Internet or can be generated as used. When the data

is already distributed among the hard disks, all of the

Hadoop Map functions can read the input data in parallel.

Assuming k nodes are available in the MITHRA cluster,

the theoretical aggregate I/O bandwidth becomes k times

the I/O bandwidth of each hard disk.

When streaming from the Internet, each node receives

its own specific data set. In theory, this task might

not be highly parallelizable since the incoming network

connection bandwidth becomes the bottleneck. However

for practical purposes, it can have enough bandwidth to

fill all the node’s input data bandwidth specification, and

thus the task can be parallelized.

Finally, our best parallelism can be achieved when

the application needs or can be changed to use run-time

generated values as its input set. This is because even

though the generation of the Σ set takes time, it will

probably take less time than to load them from hard disks

or read them through slow network connections. This is

the case for the Monte Carlo simulation algorithms, since

they only require a set of random numbers as their Σ set.

5

We generate quasirandom numbers using the Nieder-

reiter quasirandom generator[11] in the GPUs. A

quasirandom or low discrepancy sequence, such as

the Faure, Halton, Hammersley, Niederreiter or Sobol

sequences[11], [12] is “less random” than a pseudoran-

dom number sequence, but more useful for such tasks

as approximation of integrals in higher dimensions and

in global optimization. This is because low discrepancy

sequences tend to sample space “more uniformly” than

random numbers. Algorithms that use such sequences

may have superior convergence[11]. Creating quasi or

psuedo random numbers is a very time consuming task,

therefore it is best to create the random numbers in

the GPUs where they will be consumed in a distributed

manner to utilize all the processing elements available,

in contrast to creating them directly in the CPU using

a sequential algorithm and then transferring them to the

GPU memory through the low bandwidth PCI-Express

bus. We base this part of our work on an implementation

of this algorithm from the CUDA SDK[13].

Another requirement for the Monte Carlo simulation

algorithms is the application of a normal distribution

PDF to the random numbers. For the inverse cumulative

normal function z = N ′(p), there are several numerical

implementations providing different degrees of accuracy

and efficiency[14]. A very fast and accurate approxi-

mation is the one given by Boris Moro in [15]. This

algorithm also runs on the GPU.

2) Data Independent Φ: As mentioned earlier, Φ is

data independent across executions, and can match the

SIMD execution model of GPUs. For our experiments

we chose the “Black Scholes” option pricing equation,

which conforms to the requirements of the MUD for-

malism for Φ.

3) Inter-key Parallelism of ⊕: This parallelism op-

portunity can be exploited when the application uses

more than one key in its intermediate key/value pairs.

The inter-key parallelism is usually a side effect of the

algorithm used to solve a problem correctly. However,

the programmer can use it as a measure to force paral-

lelism across nodes of a cluster, especially when the ⊕

aggregator is not associative or commutative.

For a Monte Carlo algorithm, the intermediate keys

need not be different, and the reduction aggregator can

be made into an associative and commutative function,

and therefore the intra-key parallelism (described next)

can exploit all the inherent parallelism available in the

problem.

4) Intra-key Parallelism of ⊕: The last step of a

Monte Carlo algorithm is the calculation of required

indicator summary statistics. We have provided examples

and details of two summary statistics functions used in

our implementation: mean and variance. Both of these

functions are decomposed in our implementation, so

that an associative and commutative function (addition)

is used as the aggregator. Therefore, this aggregator

function can be applied inside the GPUs, and then across

multiple nodes of the cluster in the Hadoop reduction

function (which acts as the η(·) function of the MUD

formalism).

V. EVALUATION

A. Black Scholes Overview

A financial option[16] is the right, but not an obliga-

tion to purchase an asset at a future date(expiration date)

at an exercise price. Call options grant the holder the

right to purchase an underlying asset while Put options

allow the holder to sell. Since the price of the underlying

asset varies over time due to volatility, pricing an option

is an extremely important process. Theory suggests that

if options are traded in the free market, their price will

converge to a fair market value. Black Scholes is one

method of calculating this value by simulating many

possible paths where the price drifts up and down along

the time axis following a random Brownian motion of

gains and losses.

In this paper, we concern ourselves with European

stock options which can only be exercised at the expi-

ration date, and we do not consider transaction costs,

dividends and restrictions on short selling. We assume

that money can be borrowed freely at a risk-free rate.

To compute the price of an option, we apply the

mathematical formula shown in Algorithm 1 to a Monte

Carlo simulation to estimate possible final option prices.

The parameters to this equation are: S, which represents

the asset value function, r represents the continuously

compounded interest rate, σ the volatility of the asset

and T the expiry time. Each trial computes the potential

gain from buying the asset at the agreed upon option

price and selling it for the fair market value. Given the

random normal distribution of points sampled, taking the

arithmetic mean and standard deviation of the distribu-

tion establishes the exercise price and strike price.

B. Performance

The algorithm is divided into three stages: the Φ
stage performs the map and evaluates the Black Scholes

formula over random Gaussian sample points producing

intermediate key/value pairs. Once the mappers finish

executing, the framework collects all the intermediate

key/value pairs with like keys and feeds them to the

reducer ⊕. The final computation is produced by η

6

which calculates the mean and standard deviation 1 of the

samples. To evaluate the performance of our architecture

across multiple parallel programming implementations,

we implement the following pseudocode on all architec-

tures.

Φ(n):
for i = 1..n

G ← generate a Gaussian random number

V ← S · exp
“

(r − σ
2

2
) · T + σ

√
T · G

”

value ← exp(−r · T) · max{V − E, 0}
emitIntermediate(1, value)
emitIntermediate(2, value2)

⊕(key, values):
sum[1] ← 0
sum[2] ← 0
while(values.hasNext())

sum[key] ← sum[key] + values.next().get()

η(sum, n):

mean ← sum[1]
n

variance ←
q

sum[2]
n

− mean2

Algorithm 1. Black Scholes as a MUD algorithm

C. Threaded Implementation

In this implementation, we use standard POSIX

threads to compute the option price on an dual quad-

core Intel E5410 2.33 Ghz machine with 4 Gb memory.

To do so, we apply a four-step process:

1) Generate a pool of sample points for evaluation

2) Break the pool of sample points into n subpools,

one for each thread

3) Each thread evaluates the Black Scholes formula

over all the sample points

4) Mathematically, we average the means and sum

the variances to compute the overall mean and

standard deviation of the equal-sized buckets

One issue encountered for this implementation was the

use of the standard C-library rand() function because the

function is not re-entrant and thus locking is required to

maintain state consistency. Instead, we use the re-entrant

rand r() function to avoid contention issues.

Figure 2 depicts the performance of the threaded ver-

sion of Black Scholes. We simulate the single threaded

version of the program by simply running the algorithm

with a single thread. In each case, the map portion

dominates the computation while the reduce accounts

for less than one percent of the total execution time.

1The calculation of standard deviation from sum of squared values

is optimized as follows:
P

N

i=1 (xi − x̄)2 =
“

P

N

i=1 x
2
i

”

− Nx̄
2

=⇒ σ =

r

1
N

“

P

N

i=1 x2
i

”

− x̄2

D. Phoenix Implementation

Phoenix[17] is a MapReduce framework for multi-

core/multiprocessor machines. MapReduce takes a set of

inputs, splits it into batches, then processes each input

using a mapper. The mapper then emits key value pairs

into intermediate storage and the reduce function then

sorts all key value pairs and processes each pair with

identical keys into a reducer. At the end of the process,

a result is emitted. In Phoenix, as in Hadoop (discussed

in the next section), the splitter first breaks up the batch

of sample points over n mappers. Each mapper then

evaluates the sampling function at each sample point and

collects these intermediate outputs into a key value pair

as per the MapReduce framework. The reducers then

take the intermediate outputs and processes them into

the final output.

In our implementation, we use the same dual quad-

core machine and vary the number of mappers. Figure 4

shows the performance of the Phoenix engine plateauing

as early as four cores and doubling the processing power

seems to have diminishing returns. When operating at

full speed, Phoenix beats the multithreaded implementa-

tion by about 200 seconds.

E. Hadoop

We implemented Black Scholes on Hadoop (0.19)

and ran it on our 496 core (62 nodes) Hadoop clus-

ter2. In our design, each mapper is responsible for

generating random sample points and evaluating the

sampling function at each point. Upon completion, each

mapper outputs two (key, value) pairs as intermediate

output: (0, sumV alues) and (1, sumSquaresV alues).
We use the Combiner optimization mentioned in

[1] where in, we perform local reductions on

each node and then emit (0, sumLocalV alues) and

(1, sumSquaresLocalV alue). In the end, we use a sin-

gle reducer to compute the mean and standard deviation

over all the evaluated sample points. However, we did

not aggressively optimize the implementation.

The cloud configuration dictates 4 mappers and 4

reducers per node. Each node is a dual quad core with

8 GB of RAM and 292GB of disk space. We run the

MapReduce program with 32, 64, 128, 248 and 256

mappers. In each experiment, we perform a total of 4

billion iterations of the Black Scholes algorithm. We

observed an increase in the run time when the number of

mappers increases from 248 to 256 due to the increase in

the overhead of the Hadoop framework and when there

are more map tasks than the number of available map

slots (62 * 4 = 248).

2http://cloud.cs.illinois.edu

7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of threads

Thread Performance

Fig. 2. Thread Performance

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 32 64 128 256

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of Mappers

Black Scholes on 62 Hadoop nodes

Fig. 3. Hadoop Performance: The number of mappers is the same
as the number of cores utilized

F. CUDA Implementation

We also implemented the same Black Scholes calcu-

lations on NVIDIA’s CUDA[10] general purpose GPU

architecture. Rather than using the MARS[18] GPU

MapReduce framework, we opted to design our system

directly using NVIDIA’s framework because it afforded

us more control over execution. To ensure a fair com-

parison, we followed the MapReduce model introduced

throughout this paper, where each computing element

performs a single Black Scholes calculation in the Map

phase. As mentioned earlier in the paper, the required

random numbers are created in the GPU using a Nieder-

reiter quasirandom generator[11].

We ran our experiments on two different NVIDIA

GPUs. The first card is a 9800 GX2 with 2 GPU chips

onboard, each having 128 processing elements running

on a core clock of 600 Mhz, and 512 MBytes of 256-bit

bus GDDR3 for each chip. The second GPU card is a

Quadro FX570 with 16 processing elements running on a

core clock of 460 MHz and sporting 256 MBytes of 128

bit DDR2 RAM. The reduction is also programmed to

run in the GPU using a binary tree reduction approach.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8 9

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of Cores

Phoenix Performance

Fig. 4. Phoenix Performance

The first experiment was run on the 9800 GX2. We ran

the Black Scholes computation for 4 billion iterations.

Since such an array would be larger than the physical

memory of our cards, we split the data set into smaller

segments, and ran them in sequence. Each segment

processes a data set of 64 MBytes, which counting

for additional intermediate arrays takes less than 512

MBytes of memory and therefore fits in our GPU card

memory. In total, the experiment ran for 24.51 seconds

where the map stage finished in 8.34 seconds while the

reduce took 16.2 seconds. By leveraging the parallelism

inherent in CUDA, the map finishes in a short amount

of time while the reduce was inherently less parallel.

This is a stark contrast to the multi-core experiments,

where the map stage took the majority of run-time. For

the Quadro 570 with 16 cores, we reduce the size of

the immediate array to 16 MBytes to match the size

of the video memory. In this configuration, the total

runtime is 245.77 seconds, where the map consumed

108.18 seconds and reduce took 137.59 seconds. The

results are shown in Figure 5.

G. MITHRA

MITHRA combines the benefits of Hadoop’s dis-

tributed computing with CUDA’s raw processing power.

Our technique requires no change to the Hadoop sched-

uler or any part of its core. Hadoop streaming[19] allows

programmers to specify native binaries as mappers and

reducers. Our mapper is a native Linux process which

utilizes the unmodified NVIDIA CUDA version of Black

Scholes mentioned earlier. Each node then utilizes the

full power of its GPUs and performs the mapping process

at full steam. Once the mappers complete, the local

reducers (like the combiner optimization in Hadoop)

begin to process the aggregate results using the binary

tree reduction optimization. These intermediate values

are then passed through the Hadoop framework to a

8

 0

 50

 100

 150

 200

 250

 300

9800 GX2Quadro FX 570

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Black Scholes on CUDA

Reduce
Map

Fig. 5. CUDA Performance on two different NVIDIA GPUs

single reducer which performs the final computation

of means and standard deviation over all the evaluated

sample points. As shown in Figure 6, we perform four

experiments that vary the number of GPUs used running

a total of 4 billion iterations of the Black-Scholes al-

gorithm. In the first experiment, only a single node is

used in Hadoop and only one CUDA card is utilized.

The Hadoop overhead is estimated by using an identity

mapper and an identity reducer, which shows the amount

of time taken by the Hadoop framework to fetch the

inputs, start the program and write the output. Since the

9800 GX2 cards are actually 2 cards in one package

(they even have two separate PCBs), and since most of

the computation of both Map and Reduce are performed

in GPUs, in the next experiment we utilize these 2 GPUs

on the same machine. Our assumption here is that since

the host CPU is not involved in either Map or Reduce,

we can treat each physical host as two nodes of the

Mithra cluster. Of course Hadoop has its own overhead,

therefore this results in slower completion than if a single

GPU is used on 2 machines (shown as 2*). Finally, we

run our experiment utilizing both the CUDA cards on

both machines.

Comparing the result with those of Hadoop,

we see that a MITHRA cluster of 4 nodes runs

the total computation in 14.4 seconds, while the

Hadoop cluster takes 59 seconds. This means

that for each node, the MITHRA architecture has

(59s · 4map · 62nodes)/(14.4s · 4GPUs) = 254 times

performance improvement.

VI. RELATED WORK

MITHRA is based on several well researched ideas

and projects. It built upon the Hadoop[2] open source

MapReduce framework, and extends it with the ability

to run GPGPU kernels[10]. Even though MapReduce[1]

and Hadoop are recent developments, their basic math-

 0

 5

 10

 15

 20

 25

 30

 35

 40

42*21

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Number of GPUs used

Black Scholes on MITHRA

CUDA computation
Hadoop overhead

Fig. 6. MITHRA peformance

ematical underpinnings were discussed as early as

1987[20], and has been well studied afterwards[21], [22],

[23], [24]. List homomorphisms research is typically

more theory oriented, however, and to the best of our

knowledge has not been utilized in practical applications

and architectures thus far. Other formalism also exists for

Map Reduce types of computation[25], [6]. Our formal-

ism is an extension of that presented in [6] with some

modifications to support the specifics of MapReduce.

The simplicity of the MapReduce model has long been

one of it’s most attractive features, resulting in several

implementations of various flavors and widespread prac-

tical use. Aside from typical cluster implementations[1],

[2], other implementations of this framework exists for

other platforms as well. Mars[18] is another attempt at

bringing the MapReduce paradigm to a non-distributed

system, implemented on a single NVIDIA G80 GPU.

It aims to hide the complexities of GPU programming,

while still achieving strong performance. However,[18]

does not provide a solution for scalability[26] brought

the MapReduce paradigm to heterogeneous multi-core

systems. By taking a high level library-based approach,

they turn the usually ad-hoc and exhaustive approach

to programming for heterogeneous parallel systems into

a more manageable one, giving strong scalability with

minimal programmer effort.

There has been lots of recent work on clustering

GPUs. Fan et al[27] proposed using cluster of GPUs

for scientific computing. Their work preceded the avail-

ability of general purpose GPU programming platforms,

therefore they use GPGPU techniques to masquerade

their computation as a graphics application. Zippy[28]

abstracts GPU cluster programming with a two level

parallelism hierarchy and a non-uniform memory access

model. They adapt the Global Arrays programming

model to the GPU cluster model and combine it with the

stream processing model. A scalable parallel framework

9

based on MapReduce has been built by Tu et al[29]

for analyzing terascale molecular dynamics simulation

trajectories. Similary, Phillips et al describe strategies for

the decomposition and scheduling of computation among

CPU cores and GPUs, and techniques for overlapping

communication and CPU computation with GPU for

kernel execution for NAMD[30].

VII. CONCLUDING REMARKS AND FUTURE WORK

The MITHRA architecture shows that a set of GPU-

enabled nodes running on a MapReduce cluster can

achieve significant speedup of scientific computing ap-

plications. Using the popular Black-Scholes option pric-

ing model, we achieved a speedup of over 254 times

per cluster node. Our mathematical analysis reveals that

the speed gains apply not only to MapReduce problems,

but also to more generalized MUD domains. These

results on the MITHRA architecture demonstrate the

merits of our architecture and opens up opportunities

to apply parallel computing in a distributed environment.

By virtue of increased productivity per node, we are able

to significantly reduce the number of nodes required to

perform the computations.

VIII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for

their valuable feedback. This research was supported by

grants from Motorola,. Our experiments were performed

on hardware generously donated by NVIDIA. This work

was funded, in part, by NSF IIS Grant #0841765. The

views expressed are those of the authors only.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[2] “http://hadoop.apache.org/.”
[3] P. Colella, “Defining Software Requirements for Scientific Com-

puting,” presentation, 2004.
[4] J. Wittwer, “Monte Carlo Simulation Basics,” Jun

2004. [Online]. Available: http://vertex42.com/ExcelArticles/
mc/MonteCarloSimulation.html

[5] D. Landau and K. Binder, A Guide to Monte Carlo Simulations in

Statistical Physics. New York, NY, USA: Cambridge University
Press, 2005.

[6] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein,
and Z. Svitkina, “On the complexity of processing massive,
unordered, distributed data,” May 2007. [Online]. Available:
http://arxiv.org/abs/cs/0611108

[7] Z. Hu, H. Iwasaki, and M. Takechi, “Formal derivation of effi-
cient parallel programs by construction of list homomorphisms,”
ACM Trans. Program. Lang. Syst., vol. 19, no. 3, pp. 444–461,
1997.

[8] U. Cherubini and G. D. Lunga, Structured Finance: The Object

Oriented Approach (The Wiley Finance Series). John Wiley &
Sons, 2007.

[9] M. J. Flynn, “Some computer organizations and their effective-
ness,” IEEE Transactions on Computers, vol. 21, no. 9, pp. 948–
960, September 1972.

[10] “Cuda programming guide,” Available at

http://www.nvidia.com/cuda.
[11] H. Niederreiter, Random number generation and quasi-Monte

Carlo methods. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 1992.

[12] Random number generation and monte carlo method. Springer-
Verlag, 1998.

[13] “Niederreiter quasirandom sequence generator,” Available in

NVIDIA CUDA SDK.
[14] P. Jaeckel, Monte Carlo Methods in Finance. Wiley, 2002.
[15] B. Moro, “The full mont,” Union Bank of Switzerland, Published

in RISK magazine, 1995.
[16] M. P. Craig Kolb, Chapter 45. Option pricing on the GPU, GPU

Gems 2. Addison-Wesley Professional, 2005.
[17] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and

C. Kozyrakis, “Evaluating mapreduce for multi-core and multi-
processor systems,” in HPCA ’07: Proceedings of the 2007 IEEE

13th International Symposium on High Performance Computer

Architecture. Washington, DC, USA: IEEE Computer Society,
2007, pp. 13–24.

[18] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: a mapreduce framework on graphics processors,” in PACT

’08: Proceedings of the 17th international conference on Parallel

architectures and compilation techniques. New York, NY, USA:
ACM, 2008, pp. 260–269.

[19] “Hadoop streaming,” available at hadoop.apache.org.
[20] R. S. Bird, “An introduction to the theory of lists,” in Proceedings

of the NATO Advanced Study Institute on Logic of programming

and calculi of discrete design. New York, NY, USA: Springer-
Verlag New York, Inc., 1987, pp. 5–42.

[21] M. Cole, “Parallel programming with list homomorphisms,”
Parallel Processing Letters, vol. 5, pp. 191–203, 1995.

[22] S. Gorlatch, “Constructing list homomorphisms,” Universitt Pas-
sau, Germany, Tech. Rep., 1995.

[23] K. Kakehi, Z. Hu, and M. Takeichi, “List homomorphism
with accumulation,” in In Proceedings of Conference on Soft-

ware Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing (SNPD, 2003, pp. 250–259.
[24] A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi, “The third

homomorphism theorem on trees: downward & upward lead
to divide-and-conquer,” in POPL ’09: Proceedings of the 36th

annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages. New York, NY, USA: ACM, 2009,
pp. 177–185.

[25] R. Lämmel, “Google’s mapreduce programming model — revis-
ited,” Sci. Comput. Program., vol. 68, no. 3, pp. 208–237, 2007.

[26] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng,
“Merge: a programming model for heterogeneous multi-core
systems,” SIGPLAN Not., vol. 43, no. 3, pp. 287–296, 2008.

[27] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster
for high performance computing,” in SC ’04: Proceedings of the

2004 ACM/IEEE conference on Supercomputing. Washington,
DC, USA: IEEE Computer Society, 2004, p. 47.

[28] Z. Fan, F. Qiu, and A. E. Kaufman, “Zippy: A framework
for computation and visualization on a gpu cluster,” Computer

Graphics Forum, vol. 27, no. 2, pp. 341–350, Apr. 2008.
[29] T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror,

J. Gullingsrud, M. O. Jensen, J. L. Klepeis, P. Maragakis,
P. Miller, K. A. Stafford, and D. E. Shaw, “A scalable parallel
framework for analyzing terascale molecular dynamics simula-
tion trajectories,” in SC ’08: Proceedings of the 2008 ACM/IEEE

conference on Supercomputing. Piscataway, NJ, USA: IEEE
Press, 2008, pp. 1–12.

[30] J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a message-
driven parallel application to gpu-accelerated clusters,” in SC ’08:

Proceedings of the 2008 ACM/IEEE conference on Supercomput-

ing. Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–9.

10

