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ABSTRACT

An increasing number of MapReduce applications associ-
ated with live business intelligence require completion time
guarantees. In this paper, we consider the popular Pig frame-
work that provides a high-level SQL-like abstraction on top
of MapReduce engine for processing large data sets. Pro-
grams written in such frameworks are compiled into directed
acyclic graphs (DAGs) of MapReduce jobs. There is a lack
of performance models and analysis tools for automated per-
formance management of such MapReduce jobs. We of-
fer a performance modeling environment for Pig programs
that automatically profiles jobs from the past runs and aims
to solve the following inter-related problems: (i) estimating
the completion time of a Pig program as a function of allo-
cated resources; (ii) estimating the amount of resources (a
number of map and reduce slots) required for completing a
Pig program with a given (soft) deadline. For solving these
problems, initially, we optimize a Pig program execution by
enforcing the optimal schedule of its concurrent jobs. For
DAGs with concurrent jobs, this optimization helps reducing
the program completion time: 10%-27% in our experiments.
Moreover, it eliminates possible non-determinism of concur-
rent jobs’ execution in the Pig program, and therefore, en-
ables a more accurate performance model for Pig programs.
We validate our approach using a 66-node Hadoop cluster
and a diverse set of workloads: PigMix benchmark, TPC-H
queries, and customized queries mining a collection of HP
Labs’ web proxy logs. The proposed scheduling optimiza-
tion leads to significant resource savings (20%-40% in our
experiments) compared with the original, unoptimized solu-
tion, and the predicted program completion times are within
10% of the measured ones.

1. INTRODUCTION

The amount of enterprise data produced daily is ex-
ploding. This is partly due to a new era of automated
data generation and massive event logging of automated
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and digitized business processes; new style customer
interactions that are done entirely via web; a set of
novel applications used for advanced data analytics in
call centers and for information management associated
with data retention, government compliance rules, e-
discovery and litigation issues that require to store and
process large amount of historical data. Many com-
panies are following the new wave of using MapRe-
duce [4] and its open-source implementation Hadoop
to quickly process large quantities of new data to drive
their core business. MapReduce offers a scalable and
fault-tolerant framework for processing large data sets.
However, a single input dataset and simple two-stage
dataflow processing schema imposed by MapReduce model
is low level and rigid. To enable programmers to specify
more complex queries in an easier way, several projects,
such as Pig [6], Hive [15], Scope [3], and Dryad [9], pro-
vide high-level SQL-like abstractions on top of MapRe-
duce engines. These frameworks enable complex ana-
lytics tasks (expressed as high-level declarative abstrac-
tions) to be compiled into directed acyclic graphs (DAGs)
of MapReduce jobs.

Another technological trend is the shift towards using
MapReduce and the above frameworks for supporting
latency-sensitive applications, e.g., personalized adver-
tising, sentiment analysis, spam and fraud detection,
real-time event log analysis, etc. These MapReduce
applications are deadline-driven and typically require
completion time guarantees and achieving service level
objectives (SLOs).  While there have been some re-
search efforts [17, 19, 14] towards developing perfor-
mance models for MapReduce jobs, these techniques do
not apply to complex queries consisting of MapReduce
DAGs. To address this limitation, our paper studies the
popular Pig framework [6], and aims to design a perfor-
mance modeling environment for Pig programs to offer
solutions for the following problems:

e Given a Pig program, estimate its completion time as
a function of allocated resources (i.e., allocated map
and reduce slots);

e Given a Pig program with a completion time goal, es-



timate the amount of resources (a number of map and
reduce slots) required for completing the Pig program
with a given (soft) deadline.

The designed performance framework enables an SLO-
driven job scheduler for MapReduce environments that
given a Pig program with a completion time goal, it
could allocate the appropriate amount of resources to
the program that it completes within the desired dead-
line. This framework utilizes an automated profiling
tool and past Pig program runs to extract performance
profiles of the MapReduce jobs that constitute a given
Pig program. We focus on Pig, since it is quickly becom-
ing a popular and widely-adopted system for expressing
a broad variety of data analysis tasks. With Pig, the
data analysts can specify complex analytics tasks with-
out directly writing Map and Reduce functions. In June
2009, more than 40% of Hadoop production jobs at Ya-
hoo! were Pig programs [6].

While our paper is based on the Pig experience, we
believe that the proposed models and optimizations are
general and can be applied for performance modeling
and resource allocations of complex analytics tasks that
are expressed as an ensemble (DAG) of MapReduce
jobs.

The paper makes the following key contributions:

Pig scheduling optimizations. For a Pig program
defined by a DAG of MapReduce jobs, its completion
time might be approximated as the sum of completion
times of the jobs that constitute this Pig program. How-
ever, such model might lead to a higher time estimate
than the actual measured program time. The reason is
that unlike the execution of sequential jobs where due
to data dependencies the next job can only start after
the previous one is completed, for concurrent jobs in
the DAG, they might be executed in arbitrary order
and their map (and reduce) phases might be pipelined.
That is, after one job completes its map phase and be-
gins its reduce phase, the other concurrent job can start
its map phase execution with the released map resources
in a pipelined fashion. The performance model should
take this “overlap” in executions of concurrent jobs into
account. Moreover, this observation suggests that the
chosen execution order of concurrent jobs may impact
the “amount of overlap” and the overall program pro-
cessing time. Using this observation, we first, optimize
a Pig program execution by enforcing the optimal sched-
ule of its concurrent jobs. We evaluate optimized Pig
programs and the related performance improvements
using TPC-H queries and a set of customized queries
mining a collection of HP Labs’ web proxy logs (both
sets are presented by the DAGs with concurrent jobs).
Our results show 10%-27% decrease in Pig program
completion times.

Performance modeling framework. The pro-
posed Pig optimization has another useful outcome: it

eliminates existing non-determinism in Pig program ex-
ecution of concurrent jobs, and therefore, it enables bet-
ter performance predictions. We develop an accurate
performance model for completion time estimates and
resource allocations of optimized Pig programs. The
accuracy of this model is validated using PigMix bench-
mark [2] and a combination of TPC-H and web proxy
log analysis queries on a 66-node Hadoop cluster. Our
evaluation shows that the predicted completion times
are within 10% of the measured ones. For Pig pro-
grams with concurrent jobs, we demonstrate that the
proposed approach leads to significant resource savings
(20%-40% in our experiments) compared with the orig-
inal, non-optimized solution.

This paper is organized as follows. Section 2 provides
a background on MapReduce processing and the Pig
framework. Section 3 discusses subtleties of concurrent
jobs execution in Pig, introduces optimized scheduling
of concurrent jobs, and offers a novel performance mod-
eling framework for Pig programs. Section 4 describes
the experimental testbed and three workloads used in
the performance study. The models’ accuracy is evalu-
ated in Section 5. Section 6 describes the related work.
Section 7 presents a summary and future directions.

2. BACKGROUND

This section provides a basic background on the MapRe-
duce framework [4] and its extension, the Pig system [6].

2.1 MapReduce Jobs

In the MapReduce model, computation is expressed
as two functions: map and reduce. The map function
takes an input pair and produces a list of intermediate
key/value pairs. The reduce function then merges or
aggregates all the values associated with the same key.

MapReduce jobs are automatically parallelized, dis-
tributed, and executed on a large cluster of commodity
machines. The map and reduce stages are partitioned
into map and reduce tasks respectively. Each map task
processes a logical split of input data. The map task
reads the data, applies the user-defined map function
on each record, and buffers the resulting output. The
reduce stage consists of three phases: shuffle, sort and
reduce phase. In the shuffle phase, the reduce tasks
fetch the intermediate data files from the already com-
pleted map tasks, thus following the “pull” model. After
all the intermediate data is shuffled (i.e., when the en-
tire map stage with all the map tasks is completed), a
final pass is made to merge all these sorted files, hence
interleaving the shuffle and sort phases. Finally, in the
reduce phase, the sorted intermediate data is passed
to the user-defined reduce function. The output from
the reduce function is generally written back to the dis-
tributed file system.

Job scheduling in Hadoop is performed by a master



node, which manages a number of worker nodes in the
cluster. Each worker has a fixed number of map slots
and reduce slots, which can run map and reduce tasks
respectively. The number of map and reduce slots is
statically configured (typically, one per core or disk).
Slaves periodically send heartbeats to the master to re-
port the number of free slots and the progress of tasks
that they are currently running. Based on the availabil-
ity of free slots and the scheduling policy, the master
assigns map and reduce tasks to slots in the cluster.

2.2 Pig Programs
There are two main components in the Pig system:

e The language, called Pig Latin, that combines high-
level declarative style of SQL and the low-level pro-
cedural programming of MapReduce. A Pig program
is similar to specifying a query execution plan: it rep-
resent a sequence of steps, where each one carries a
single data transformation using a high-level data ma-
nipulation constructs, like filter, group, join, etc. In
this way, the Pig program encodes a set of explicit
dataflows.

e The execution environment to run Pig programs. The
Pig system takes a Pig Latin program as input, com-
piles it into a DAG of MapReduce jobs, and coor-
dinates their execution on a given Hadoop cluster.
Pig relies on underlying Hadoop execution engine for
scalability and fault-tolerance properties.

The following specification shows a simple example of
a Pig program. It describes a task that operates over a
table URLs that stores data with the three attributes:
(url, category, pagerank). This program identifies
for each category the url with the highest pagerank
in that category.

URLs = load ’dataset’ as (url, category, pagerank);
groups = group URLs by category;

result = foreach groups generate group, mam(URLs.pagemnk/F;)

store result into 'myQOutput’

The example Pig program is compiled into a single
MapReduce job. Typically, Pig programs are more com-
plex, and can be compiled into an execution plan con-
sisting of several stages of MapReduce jobs, some of
which can run concurrently. The structure of the ex-
ecution plan can be represented by a DAG of MapRe-
duce jobs that could contain both concurrent and se-
quential branches. Figure 1 shows a possible DAG of
five MapReduce jobs {j1, jo, j3, j4, J5 }, where each node
represents a MapReduce job, and the edges between the
nodes represent data dependencies between jobs.

To execute the plan, the Pig engine first submits all
the ready jobs (i.e., the jobs that do not have data de-
pendency on the other jobs) to Hadoop. After Hadoop
has processed these jobs, the Pig system deletes them
and the corresponding edges from the processing DAG,

Figure 1: Example of a Pig program’ execution plan

represented as a DAG of MapReduce jobs.

and identifies and submits the next set of ready jobs.
This process continues until all the jobs are completed.
In this way, the Pig engine partitions the DAG into mul-
tiple stages, each containing one or more independent
MapReduce jobs that can be executed concurrently.
For example, the DAG shown in Figure 1 is parti-
tioned into the following four stages for processing:

o first stage: {Jj1,J2};

e second stage: {Jj3,j4};

e third stage: {Jjs};

o fourth stage: {jg}.

In Section 5, we will show some examples based on
TPC-H and web log analysis queries that are represen-
tative of such MapReduce DAGs. Note that for stages
with concurrent jobs, there is no specifically defined or-
dering in which the jobs are going to be executed by
Hadoop.

3. PERFORMANCE MODELING FRAME-
WORK FOR PIG PROGRAMS

This section introduces our modeling framework for
Pig programs. First, we outline the profiling and mod-
eling technique for a single MapReduce job. Then we
analyze subtleties in execution of concurrent MapRe-
duce jobs and demonstrate that the job order has a
significant impact on the program completion time. We
optimize a Pig program by enforcing the optimal sched-
ule of its concurrent jobs, and it enables more accurate
ig program performance modeling.

3.1 Performance Model of a Single MapRe-
duce Job

As a building block for modeling Pig programs de-
fined as DAGs of MapReduce jobs, we apply a slightly
modified approach introduced in [17] for performance
modeling of a single MapReduce job. The proposed
MapReduce performance model [17] evaluates lower and
upper bounds on the job completion time. It is based
on a general model for computing performance bounds
on the completion time of a given set of n tasks that
are processed by k servers, (e.g., n map tasks are pro-
cessed by k map slots in MapReduce environment). Let
T1,Ts,...,T, be the duration of n tasks in a given set.
Let k£ be the number of slots that can each execute one
task at a time. The assignment of tasks to slots is done
using an online, greedy algorithm: assign each task to
the slot which finished its running task the earliest. Let



avg and maz be the average and mazimum duration of
the n tasks respectively. Then the completion time of a
greedy task assignment is proven to be at least:
n
Tlow = qua - —
7%

and at most

T = avg - + mazx.

(n—1)
k
The difference between lower and upper bounds repre-
sents the range of possible completion times due to task
scheduling non-determinism (i.e., whether the maximum
duration task is scheduled to run last). Note, that these
provable lower and upper bounds on the completion
time can be easily computed if we know the average and
maximum durations of the set of tasks and the number
of allocated slots. See [17] for detailed proofs on these

bounds.

As motivated by the above model, in order to ap-
proximate the overall completion time of a MapReduce
job J, we need to estimate the average and mazimum
task durations during different execution phases of the
job, i.e., map, shuffle/sort, and reduce phases. These
measurements can be obtained from the job execution
logs. By applying the outlined bounds model, we can
estimate the completion times of different processing
phases of the job. For example, let job J be partitioned
into Ny, map tasks. Then the lower and upper bounds
on the duration of the entire map stage in the future
execution with Sy, map slots (denoted as T%9¥ and T,7
respectively) are estimated as follows:

le\?[w = M[z]vg ’ N]\J/[/S}‘]/[ (1)
T;\L/Ip = M&Ivg . (N]\{[ - 1)/5}6] + Mv{m'r (2)

where Mg,y and My, are the average and maximum
of the map task durations of the past run respectively.
Similarly, we can compute bounds of the execution time
of other processing phases of the job. As a result, we
can express the estimates for the entire job completion
time (lower bound T%* and upper bound T;?) as a
function of allocated map/reduce slots (Sy;, S7) using
the following equation form:

Alow Blow
T}]ow — J + J + C}Iow. (3)
ST 5]

The equation for T3 can be written in a similar form
(see [17] for details and exact expressions of coefficients
in these equations). Typically, the average of lower and
upper bounds (77") is a good approximation of the job
completion time.

Once we have a technique for predicting the job com-
pletion time, it also can be used for solving the inverse
problem: finding the appropriate number of map and
reduce slots that could support a given job deadline D
(e.g., if D is used instead of T/ in Equation 3). When
we consider S3; and S} as variables in Equation 3 it

yields a hyperbola. All integral points on this hyper-
bola are possible allocations of map and reduce slots
which result in meeting the same deadline D. There is
a point where the sum of the required map and reduce
slots is minimized. We calculate this minima on the
curve using Lagrange’s multipliers [17], since we would
like to conserve the number of map and reduce slots re-
quired for the minimum resource allocation per job J
with a given deadline D. Note, that we can use D for
finding the resource allocations from the corresponding
equations for upper and lower bounds on the job com-
pletion time estimates. In Section 5, we will compare
the outcome of using different bounds for estimating a
completion time of a Pig program.

3.2 Modeling Concurrent Jobs’ Executions

Our goal is to design a model for a Pig program that
can estimate the number of map and reduce slots re-
quired for completing a Pig program with a given (soft)
deadline. These estimates can be used by the SLO-
based scheduler like ARIA [17] to tailor and control
resource allocations to different applications for achiev-
ing their performance goals. When such a scheduler
allocates a recommended amount of map/reduce slots
to the Pig program, it uses a FIFO schedule for jobs
within the DAG (see Section 2.2 for how these jobs are
submitted by the Pig system).

There is a subtlety in how concurrent jobs in the DAG
of MapReduce jobs might be executed. In the expla-
nations below, we use the following useful abstraction.
We represent any MapReduce job as a composition of
non-overlaping map and reduce stages. Indeed, there
is a barrier between map and reduce stages and any
reduce task may start its execution only after all map
tasks complete and all the intermediate data is shuffied.
However, the shuffle phase (that we consider as a part
of the reduce stage) overlaps with the map stage. Note,
that in the ARIA performance model [17] that we use
for estimating a job completion time, the shuffle phase
measurements include only non-overlaping portion of
the latency. These measurements and the model allow
us to estmate the duration of map and reduce stages
(as a function of allocated map and reduce slots) and
support a simple abstraction where the job execution
is represented as a composition of non-overlaping map
and reduce stages.

Let us consider two concurrent MapReduce jobs Jy
and .Jo. Let us also assume that there are no data de-
pendencies among the concurrent jobs. Therefore, un-
like the execution of sequential jobs where the next job
can only start after the previous one is entirely finished
(shown in Figure 2 (a)), for concurrent jobs, once the
previous job completes its map stage and begins reduce
stage processing, the next job can start its map stage
execution with the released map resources in a pipelined
fashion (shown in Figure 2 (b)). The Pig performance



model should take this “overlap” in executions of con-

current jobs into account.
JM IR JM IR
R ——
J, 2
(a) Sequential execution of two jobs Ji and Js.
J M J R
s m—|
J1 ‘JZM ‘JZR
2
(b) Concurrent execution of two jobs Ji and J.
Figure 2: Difference in executions of (a) two sequential

MapReduce jobs; (b) two concurrent MapReduce jobs.

We find one more interesting observation about con-
current jobs’ execution of the Pig program. The original
Hadoop implementation executes concurrent MapRe-
duce jobs from the same Pig program in a random order.
Some ordering may lead to inefficient resource usage and
an increased processing time. As a motivating example,
let us consider two concurrent MapReduce jobs that re-
sult in the following map and reduce stage durations:

e Job J; has a map stage duration of J¥ = 10s and
the reduce stage duration of Jf¥ = 1s.

e Job J, has a map stage duration of J = 1s and
the reduce stage duration of J& = 10s.

There are two possible executions shown in Figure 3:

J;M=10s JR=1s
i I M=1s J,R=10s
(| ]
JZ
(a) Ji is followed by J.
JM=1s J,R=10s
= ]
JZ
J;M=10s J,R=1s
e |
J

1
(b) J2 is followed by Ji.

Figure 3: Impact of concurrent job scheduling
on their completion time.

e J; is followed by J shown in Figure 3(a). The re-
duce stage of J; overlaps with the map stage of Js
leading to overlap of only 1s. The total completion
time of processing two jobs is 10s+1s+10s = 21s.

e J, is followed by J; shown in Figure 3(b). The
reduce stage of J, overlaps with the map stage of
Ji leading to a much better pipelined execution
and a larger overlap of 10s. The total makespan is
1s +10s 4+ 1s = 12s.

There is a significant difference in the job completion
time (75% in the example above) depending on the ex-
ecution order of the jobs. We optimize a Pig program
execution by enforcing the optimal schedule of its con-
current jobs. We apply the classic Johnson algorithm
for building the optimal two-stage jobs’ schedule [10].
The optimal execution of concurrent jobs leads to im-
proved completion time. Moreover, this optimization

eliminates possible non-determinism in Pig program ex-
ecution, and enables more accurate completion time
predictions for Pig programs.

3.3 Completion Time Estimates for Pig Pro-
grams

Using the model of a single MapReduce job as a build-
ing block, we consider a Pig program P that is compiled
into a DAG of | P| MapReduce jobs P = {.J1, Ja,...J|p|}.

Automated profiling. To automate the construc-
tion of all performance models, we build an automated
profiling tool that extracts the MapReduce job profiles!
of the Pig program from the past program executions.
These job profiles represent critical performance char-
acteristics of the underlying application during all the
execution phases: map, shuffle/sort, and reduce phases.

For each MapReduce job J;(1 <4 < |P|) that consti-
tutes Pig program P, in addition to the number of map
(N3i ) and reduce (Nj') tasks, we also extract met-
rics that reflect the durations of map and reduce tasks
(note that shuffle phase measurements are included in
the reduce task measurements) 2:

(M M AvgSizel ™ Selectivity:)

avg>

(R

avg’

R} .. Selectivityy)

o AvgSize]i"™"" is the average amount of input data

per map task of job J; (we use it to estimate the
number of map tasks to be spawned for processing a
new dataset).

° Selectivity]‘(/} and Selectivityl‘%' refer to the ratio of
the map (and reduce) output size to the map input
size. It is used to estimate the amount of intermedi-
ate data produced by the map (and reduce) stage of
job J;. This allows to estimate the size of the input
dataset for the next job in the DAG.

As a building block for modeling a Pig program defined
as a DAG of MapReduce jobs, we apply the approach
introduced in ARIA [17] for performance modeling of
a single MapReduce job. We extract performance pro-
files of all the jobs in the DAG from the past program
executions. Using these job profiles we can predict the
completion time of each job (and completion time of
map and reduce stages) as a function of allocated map

1To differentiate MapReduce jobs in the same Pig program, we mod-
ified the Pig system to assign a unique name for each job as follows:
queryName-stagelD-indexID, where stagelD represents the stage in
the DAG that the job belongs to, and indexzID represents the index
of jobs within a particular stage.

2Unlike prior models [17], we normalize all the collected measure-
ments per record to reflect the processing cost of a single record.
This normalized cost is used to approximate the duration of map and
reduce tasks when the Pig program executes on a new dataset with a
larger/smaller number of records. To reflect a possible skew of records
per task, we collect an average and maximum number of records per
task. The task durations (average and maximum) are computed by
multiplying the measured per-record time by the number of input
records (average and maximum) processed by the task.



and reduce slots. We can compute the completion time
using a lower or upper bound estimates as described in
Section 2. For the rest of this section, we use the com-
pletion time estimates based on the average of the lower
and upper bounds.

Let us consider a Pig program P that is compiled into
a DAG of MapReduce jobs and consists of S stages.

Note that due to data dependencies within a Pig exe-
cution plan, the nezt stage cannot start until the previ-
ous stage finishes. Let T, denote the completion time
of stage S;. Thus, the completion of a Pig program P
can be estimated as follows:

Tp= Y Ts,. (4)
1<i<S
For a stage that consists of a single job J, the stage
completion time is defined by the job J’s completion
time.

For a stage that contains concurrent jobs, the stage
completion time depends on the jobs’ execution order.
Suppose there are |S;| jobs within a particular stage
S; and the jobs are executed according to the order
{J1,J2,...J}s5,|}- Note, that given a number of allocated
map/reduce slots (S4;,SE) to the Pig program P, we
can compute for any MapReduce job J;(1 < i < |S;])
the duration of its map and reduce phases that are re-
quired for the Johnson’s algorithm [10] to determine the
optimal schedule of the jobs {Ji, J2,...Js,|}-

Let us assume, that for each stage with concurrent
jobs, we have already determined the optimal job sched-
ule that minimizes the completion time of the stage.
Now, we introduce the performance model for predict-
ing the Pig program P completion time Tp as a function

of allocated resources (Si;,SE). We use the following
notations:

timeStart]JW the start time of job J;’s map phase
timeEndy the end time of job J;’s map phase
timeStarth"j the start time of job J;’s reduce phase
timeEndf]%_ the end time of job J;’s reduce phase

Then the stage completion time can be estimated as
Ts, = tz'meEndLI,?isi‘ — timeStart))! (5)

We now explain how to estimate the start/end time of
each job’s map/reduce phase®.

Let Tj‘f and Tf‘ denote the completion times of map
and reduce phases of job J; respectively. Then

timeEnd% = timeStart% + T}f (6)

timeEndﬁ, = timeStarti + Tf (7)

3These computations present the main, typical case when the number
of allocated slots is smaller than the number of tasks that jobs need to
process, and therefore, the execution of concurrent jobs is pipelined.
There are some corner cases with small concurrent jobs when there
are enough resources for processing them at the same time. In this
case, the designed model over-estimates the stage completion time.
We have an additional set of equations that describes these corner
cases in a more accurate way. We omit them here for presentation
simplicity.

Figure 4 shows an example of three concurrent jobs ex-
ecution in the order .Jy, Jo, J3.

M JR
J JM J,R
| ]
Jz#"ip{
Ja
(a)
J;M JpM Jg
—— —
IR IR IR
[ I I ]
(b)

Figure 4: Execution of Concurrent Jobs

Note, that Figure 4 (a) can be rearranged to show the
execution of jobs’ map/reduce stages separately (over
the map/reduce slots) as shown in Figure 4 (b). It is
easy to see that since all the concurrent jobs are inde-
pendent, the map phase of the next job can start im-
mediately once the previous job’s map stage is finished,
ie.,

tz’meStartf}/[i = timeEnd_]}f_1 = timeStart%_l + T}‘i/[(l)

8
The start time timeStartJRi of the reduce stage of the
concurrent job J; should satisfy the following two con-
ditions:

1. timeStartﬁ > timeEndf}/f

2. timeStarth > timeEndﬁfl

Therefore, we have the following equation:
timeStart’t = max{timeEnd}, timeEnd} _} =
= max{timeStartJ]\/f + T}f, timeStaTtﬁ,il + T}il} (9)

Finally, the completion time of the entire Pig program
P is defined as the sum of its stages using eq. (4).

3.4 Resource Allocation Estimates for Opti-
mized Pig Programs

Let us consider a Pig program P with a given dead-
line D. The optimized execution of concurrent jobs in P
may significantly improve the program completion time.
Therefore, P may need to be assigned a smaller amount
of resources for meeting a given deadline D compared to
its non-optimized execution. First, we explain how to
approximate the resource allocation of a non-optimized
execution of a Pig program. The completion time of
non-optimized P can be represented as a sum of com-
pletion time of the jobs that comprise the DAG of this
Pig program. Thus, for a Pig program P that con-
tains |P| jobs, its completion time can be estimated as
a function of assigned map and reduce slots (S%;, SE)
as follows:

1<i<|P|



The unique benefit of this model is that it allows us to
express the completion time D of a Pig program P via a
special form equation shown below (similar to eq. (3)):
P P

D= ?—P + g—P +c? (11)
This equation can be ugéd for }s%olving the inverse prob-
lem of finding resource allocations (S}, SE) such that
P completes within time D. This equation yields a hy-
perbola if (S, SE) are considered as variables. We can
directly calculate the minima on this curve by using La-
grange’s multipliers for finding the resource allocation
of a single MapReduce job with a given deadline.

The model introduced in Section 3.3 for accurate com-
pletion time estimates of an optimized Pig program is
more complex. It requires computing a function maz
for stages with concurrent jobs, and therefore, it can-
not be expressed as a single equation for solving the
inverse problem of finding the appropriate resource al-
location. However, we can use the “over-provisioned”
resource allocation defined by eq. (11) as an initial point
for determining the solution required by the optimized
Pig program P. The hyperbola with all the possible
solutions according to the “over-sized” model is shown
in Figure 5 as the red curve, and A(M, R) represents
the point with a minimal number of map and reduce
slots (i.e., the pair (M, R) results in the minimal sum
of map and reduce slots). We designed the following
algorithm described below that determines the minimal
resource allocation pair (M,,in, Rimin) for an optimized
Pig program P with deadline D. This computation is
illustrated by Figure 5.
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Figure 5: Resource allocation estimates for an
optimized Pig program.
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First, we find the minimal number of map slots M’
(i.e., the pair (M’, R)) such that deadline D can still be
met by the optimized Pig program with the enforced op-
timal execution of its concurrent jobs. We do it by fixing
the number of reduce slots to R, and then step-by-step
reducing the allocation of map slots. Specifically, Algo-
rithm 1 sets the resource allocation to (M — 1, R) and
checks whether program P can still be completed within
time D (we use Tp"? for completion time estimates).

If the answer is positive, then it tries (M — 2, R) as
the next allocation. This process continues until point
B(M', R) (see Figure 5) is found such that the number
M’ of map slots cannot be further reduced for meeting
a given deadline D (lines 1-4 of Algorithm 1).

Algorithm 1 Determining the resource allocation for
a Pig program

Input:

Job profiles of all the jobs in P = {J1,J2,...J |5, }

D < a given deadline

(M, R) < the minimum pair of map and reduce slots obtained
for P and deadline D by applying the basic model

Optimal execution of jobs J1, Jz,...J|s,| based on (M, R)
Output:

Resource allocation pair (My,in, Rmin) for optimized P

: M+ M,R + R

. while TI'iUg(M’7 R)< D do
M <M -1

end while

while T;Ug(M, R')< D do
R <R —1,

end while

Mpyin < M, Rpmin < R, Min < (M + R)

: for M « M’ +1 to M do
C A~

10: R=R-1

11: while TI(;I,U“](M7 R) < D do

12: ReR-1

13: end while

14: if M + R < Min then

// From A to B

// From A to C

// Explore purple curve B to

15: Mnin <= M, Rypin, < R, Min < (M + R)
16: end if
17: end for

In the second step, we apply the same process for find-
ing the minimal number of reduce slots R’ (i.e., the pair
(M, R’)) such that the deadline D can still be met by
the optimized Pig program P (lines 5-7 of Algorithm 1).

In the third step, we determine the intermediate val-
ues on the curve between (M’; R) and (M, R) such that
deadline D is met by the optimized Pig program P.
Starting from point (M’, R), we are trying to find the
allocation of map slots from M’ to M, such that the
minimal number of reduce slots R should be assigned to
P for meeting its deadline (lines 10-12 of Algorithm 1).

Finally, (Mnin, Rmin) is the pair on this curve such
that it results in the the minimal sum of map and reduce
slots.

4. EXPERIMENTAL TESTBED AND WORK-
LOADS

All experiments are performed on 66 HP DL145 GL3
machines. Each machine has four AMD 2.39GHz cores,
8 GB RAM and two 160GB hard disks. The machines
are set up in two racks and interconnected with gigabit
Ethernet. We used Hadoop 0.20.2 and Pig-0.7.0 with
two machines dedicated as the JobTracker and the Na-
meNode, and remaining 64 machines as workers. Each
worker is configured with 2 map and 1 reduce slots.
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Figure 6: DAGs of Pig programs in the TPC-H and HP Labs Proxy query sets.

The file system blocksize is set to 64MB. The replica-
tion level is set to 3. We disabled speculative execution
since it did not lead to significant improvements in our
experiments.

In our case studies, we use three different workload
sets: the PigMix benchmark, TPC-H queries, and cus-
tomized queries for mining web proxy logs from an en-
terprise company. We briefly describe each dataset and
our respective modifications:

PigMix. We use the well-known PigMix bench-
mark [2] that was created for testing Pig system perfor-
mance. It consists of 17 Pig programs (L1-L17), which
uses datasets generated by the default Pigmix data gen-
erator. In total, 1TB of data across 8 tables are gener-
ated. The PigMix programs cover a wide range of the
Pig features and operators, and the data set are gen-
erated with similar properties to Yahoo’s datasets that
are commonly processed using Pig. With the exception
of L11 (that contains a stage with 2 concurrent jobs),
all PigMix programs involve DAGs of sequential jobs.
Therefore, with the PigMix benchmark we mostly eval-
uate the accuracy of the proposed performance model
for completion time estimates and resource allocation
decisions,. The efficiency of the designed optimization
technique for concurrent job execution is evaluated with
the next two workloads in the set.

TPC-H. This workload is based on TPC-H [1], a stan-
dard database benchmark for decision-support work-
loads. We select three queries @5, @8, Q10 out of exist-
ing 22 SQL queries and express them as Pig programs.

For each query, we select a logical plan that results in

proxy gateway at HP Labs. The fields include informa-
tion such as date, time, time-taken, c-ip, cs-host, etc.
We intend to create realistic Pig queries executed on
real-world data.

e The Proxy @1 program investigates the dynamics in
access frequencies to different websites per month and
compares them across different months. The Pig pro-
gram results in 3 concurrent MapReduce jobs with
the DAG of the program shown in Figure 6 (d).

e The Proxy @2 program discovers the co-relationship
between two websites from different sets (tables) of
popular websites: the first set is created to represent
the top 500 popular websites accessed by web users
within the enterprise. The second set contains the
top 100 popular websites in US according to Alexa’s
statistics®. The program DAG is shown in Figure 6 (e).

e The Prozy @3 program presents the intersection of
100 most popular websites (i.e., websites with high-
est access frequencies) accessed both during work and
after work hours. The DAG of the program is shown
in Figure 6 (f).

To perform the validation experiments, we create two
different datasets for each of the three workloads above:

1. A test dataset: It is used for extracting the job
profiles of the corresponding Pig programs.

e For PigMix benchmark, the test dataset is gen-
erated by the default data generator. It con-
tains 125 million records for the largest table
and has a total size around 1 TB.

a DAG of concurrent MapReduce jobs shown in Fig. 6 (a),(b),(c) e For TPC-H, the test dataset is generated with

respectively*:
e The TPC-H Q5 query joins 6 tables, and its dataflow
results in 3 concurrent MapReduce jobs.

e The TPC-H @8 query joins 8 tables, and its dataflow
results in two stages with 4 and 2 concurrent jobs.

e The TPC-H Q10 query joins 4 tables, and its dataflow
results in 2 concurrent MapReduce jobs.

HP Labs’ Web Proxy Query Set. This workload
consists of a set of Pig programs for analyzing HP Labs’
web proxy logs. It contains 6 months access logs to web

4VVhile more efficient logical plans may exist, our goal here is to create
a DAG with concurrent jobs to stress test our model.

scaling factor 9 using the standard data gen-
erator. The dataset size is around 9 GB.

e For HP Labs’ Web proxy query set, we use the
logs from February, March and April as the
test dataset with the total input size around
9 GB.

2. An experimental dataset: It is used to vali-
date our performance models using the profiles ex-
tracted from the Pig programs that were executed
with the test dataset. Both the test and experi-
mental datasets are formed by the tables with the
same layout but with different input sizes.

5 http://www.alexa.com/topsites



e For PigMix benchmark, the input size of the
experimental dataset is 20% larger than the
test dataset (with 150 million records for the
largest table).

e For TPC-H, the experimental dataset is around
15 GB (scaling factor 15 using the standard
data generator).

e For HP Labs’ Web proxy query set, we use the
logs from May, June and July as the ezperi-
mental dataset, the total input size is around

9 GB.

S.  PERFORMANCE EVALUATION

This section presents the performance evaluation of
the proposed models and optimizations. Since PigMix
benchmark mostly consists of the Pig programs with se-
quential DAGs, we use PigMix only for validating the
accuracy of the proposed performance models. Because
TPC-H and HP Labs’ proxy log queries represent Pig
programs that are defined by the DAGs with concur-
rent jobs, we use these two workloads for evaluating the
performance benefits of introduced Pig program opti-
mization as well as the models’ validation.

5.1 PigMix Case Study

This section aims to evaluate the accuracy of the pro-
posed models: i) the bound-based model for estimating
the completion time of Pig programs as a function of
allocated resources, and ii) the accuracy of the recom-
mended resource allocation for meeting the completion
time goals.

First, we run the Pigmix benchmark on the test dataset,
and the job profiles of the corresponding Pig programs
are built from these executions. By using the extracted
job profiles and the designed Pig model we compute
the completion time estimates of Pig programs in the
PigMix benchmark for processing these two datasets
(test and experimental) as a function of allocated re-
sources. Then we validate the predicted completion
times against the measured ones.

Figure 7 shows the predicted vs measured results for
the PigMix benchmark that processes the test dataset
with 128 map and 64 reduce slots. Given that the com-
pletion times of different programs in PigMix are in
a broad range of 100s — 2000s, for presentation pur-
poses and easier comparison, we normalize the pre-
dicted completion times with respect to the measured
ones. The three bars in Figure 7 represent the predicted
completion times based on the lower (7%°") and upper
(T"P) bounds, and the average of them (7%"9). We ob-
serve that the actual completion times (shown as the
straight Measured-CT line) of all 17 programs fall be-
tween the lower and upper bound estimates. Moreover,
the predicted completion times based on the average
of the upper and lower bounds are within 10% of the

measured results for most cases. The worst prediction
around 20% error) is for the Pig query L11.
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Figure 7: Predicted and measured completion time for
PigMix executed with test dataset and 128x64 slots.
Figure 8 shows the results for the PigMix benchmark
that processes the test dataset with 64 map and 64 re-
duce slots. Indeed, our model accurately computes the
program completion time estimates as a function of al-
located resources: the actual completion times of all 17
programs are between the computed lower and upper
bounds. The predicted completion times based on the
average of the upper and lower bounds provide the best
results: 10-12% of the measured results for most cases.
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Figure 8: Predicted and measured completion time for
PigMix executed with test dataset and 64x64 slots.

Figure 9 shows the predicted vs measured comple-
tion times for the PigMix benchmark that processes the
larger, experimental dataset with 64 map and 64 reduce

slots.
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Figure 9: Predicted and measured completion time for
PigMix executed with ezperimental dataset and 64x64 slots.

As shown in Figure 9, our model and computed es-
timates are quite accurate. The measured completion
time of all programs is between the low and upper bounds.
The predicted completion times that are based on the
average of the upper and lower bounds provide the best
results: they are within 10% of the measured results for
most cases.



In Figures 7, 8, 9 we execute PigMix benchmark three
times and report the measured completion time aver-
aged across 3 runs. A variance for most programs in
these three runs is within 1%-2%, with the largest vari-
ance being around 6%. Because the variance is so small,
we have omitted the error bars in Figures 7, 8, 9.

Our second set of experiments aims to evaluate the
solution of the inverse problem: the accuracy of a re-
source allocation for a Pig program with a completion
time goal, often defined as a part of Service Level Ob-
jectives (SLOs).

In this set of experiments, let T' denote the Pig pro-
gram completion time when the program is processed
with maximum available cluster resources (i.e., when
the entire cluster is used for program processing). We
set D = 3T as a completion time goal. Using the ap-
proach described in Section 3.4 we compute the required
resource allocation, i.e., a tailored number of map and
reduce slots that allow the Pig program to be completed
with deadline D on a new experimental dataset. We
compute resource allocations when D is targeted as ei-
ther a lower bound, or upper bound or the average of
lower and upper bounds on the completion time. Fig-
ure 10 shows the measured program completion times
based on these three different resource allocations. Sim-
ilar to our earlier results, for presentation purposes, we
normalize the achieved completion times with respect
to the given deadline D.
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Figure 10:

dataset: do we meet deadlines?

PigMix executed with the experimental

In most cases, the resource allocation that targets
D as a lower bound is insufficient for meeting the tar-
geted deadline (e.g., the L10 program misses deadline
by more than 20%). However, when we compute the
resource allocation based on D as an upper bound — we
are always able to meet the required deadline, but in
most cases, we over-provision resources, e.g., L16 and
L17 finish more than 20% earlier than a given deadline.

The resource allocations based on the average be-
tween lower and upper bounds result in the closest com-
pletion time to the targeted program deadlines.

5.2 Optimal Schedule of Concurrent Jobs

Figure 11 shows the impact of concurrent jobs schedul-
ing on the completion time of TPC-H and Proxy queries
when each program is processed with 128 map and 64

reduce slots.
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Figure 11: Normalized completion time for different
schedules of concurrent jobs: (a-b) TPC-H, (c-d) HP
Labs proxy queries.

Figures 11 (a) and (c) show two extreme measure-
ments: the best program completion time (i.e., when
the optimal schedule of concurrent jobs is chosen) and
the worst one (i.e., when concurrent jobs are executed in
the “worst” possible order based on our estimates). For
presentation purposes, the best (optimal) completion
time time is normalized with respect to the worst one.
The choice of optimal schedule of concurrent jobs re-
duces the completion time by 10%-27% compared with
the worse case ordering.

Figures 11 (b) and (d) show completion times of stages
with concurrent jobs under different schedules for the
same TPC-H and Proxy queries. Performance benefits
at the stage level are even higher: they range between
20%-30%.

5.3 Predicting Completion Time and Resource
Allocation of Optimized Pig Programs

Figure 12 shows the Pig program completion time
estimates (we use Tp"Y in these experiments) based on
the proposed performance model for TPC-H and Proxy
queries with the experimental datasets. Figure 12 shows
the results when each program is processed with 64x64
and 32x64 map and reduce slots respectively.
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Figure 12: Predicted Pig programs completion times

executed with the experimental dataset.

In all cases, the predicted completion times are within
10% of the measured ones.
Let T denote the Pig program completion time when



program P is processed with maximum available clus-
ter resources. We set D = 2 - T as a completion time
goal (we use different deadlines for different experiments
on purpose, in order to validate the accuracy of our
models for a variety of parameters). Then we compute
the required resource allocation for P executed with
the experimental dataset to meet the deadline D. Fig-
ure 13 (a) shows measured completion times achieved by
the TPC-H and Proxy’s queries respectively when they
are assigned the resource allocations computed with
the designed resource allocation model. All the queries
complete within 10% of the targeted deadlines.
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Figure 13: Resource allocations for optimized Pig pro-

grams executed with the experimental dataset.

Figure 13 (b) compares the amount of resources (the
sum of map and reduce slots) for non-optimized and
optimized executions of TPC-H and Proxy’s queries re-
spectively. The optimized executions are able to achieve
targeted deadlines with much smaller resource alloca-
tions (20%-40% smaller) compared to resource alloca-
tions for non-optimized Pig programs. Therefore, the
proposed optimal schedule of concurrent jobs leads to
significant resource savings for deadline-driven Pig pro-
grams.

6. RELATED WORK

While performance modeling in the MapReduce frame-
work is a new topic, there are several interesting re-
search efforts in this direction.

Polo et al. [14] introduce an online job completion
time estimator which can be used in their new Hadoop
scheduler for adjusting the resource allocations of differ-
ent jobs. However, their estimator tracks the progress
of the map stage alone, and use a simplistic way for
predicting the job completion time, while skipping the
shuffle/sort phase, and have no information or control
over the reduce stage.

FLEX [19] develops a novel Hadoop scheduler by propos-

ing a special slot allocation schema that aims to opti-
mize some given scheduling metric. FLEX relies on the
speedup function of the job (for map and reduce stages)
that defines the job execution time as a function of al-
located slots. However, it is not clear how to derive
this function for different applications and for different
sizes of input datasets. The authors do not provide a
detailed MapReduce performance model for jobs with
targeted job deadlines.
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ARIA [17] introduces a deadline-based scheduler for
Hadoop. This scheduler extracts the job profiles from
the past executions, and provides a variety of bounds-
based models for predicting a job completion time as
a function of allocated resources and a solution of the
inverse problem. However, these models apply only to
a single MapReduce job.

Tian and Chen [16] aim to predict performance of a
single MapReduce program from the test runs with a
smaller number of nodes. They consider MapReduce
processing at a fine granularity. For example, the map
task is partitioned in 4 functions: read a block, map
function processing of the block, partition and sort of
the processed data, and the combiner step (if it is used).
The reduce task is decomposed in 4 functions as well.
The authors use a linear regression technique to approx-
imate the cost (duration) of each function. These func-
tions are used for predicting the larger dataset process-
ing. There are a few simplifying assumptions, e.g., a
single wave in the reduce stage. The problem of finding
resource allocations that support given job completion
goals are formulated as an optimization problem that
can be solved with existing commercial solvers.

There is an interesting group of papers that design
a detailed job profiling approach for pursuing a differ-
ent goal: to optimize the configuration parameters of
both a Hadoop cluster and a given MapReduce job (or
workflow of jobs) for achieving the improved completion
time. Starfish project [8, 7] applies dynamic instrumen-
tation to collect a detailed run-time monitoring infor-
mation about job execution at a fine granularity: data
reading, map processing, spilling, merging, shuffling,
sorting, reduce processing and writing. Such a detailed
job profiling information enables the authors to analyze
and predict job execution under different configuration
parameters, and automatically derive an optimized con-
figuration. One of the main challenges outlined by the
authors is a design of an efficient searching strategy
through the high-dimensional space of parameter val-
ues. The authors offer a workflow-aware scheduler that
correlate data (block) placement with task scheduling
to optimize the workflow completion time. In our work,
we propose complementary optimizations based on op-
timal scheduling of concurrent jobs within the DAG to
minimize overall completion time.

Kambatla et al [11] propose a different approach for
optimizing the Hadoop configuration parameters (num-
ber of map and reduce slots per node) to improve MapRe-
duce program performance. A signature-based (fingerprint-
based) approach is used to predict the performance of a
new MapReduce program using a set of already studied
programs. The ideas presented in the paper are inter-
esting but it is a position paper that does not provide
enough details and lacking the extended evaluation of
the approach.



Ganapathi et al. [5] use Kernel Canonical Correlation
Analysis to predict the performance of Hive queries.
However, they do not attempt to model the actual exe-
cution of the MapReduce job: the authors discover the
feature vectors through statistical correlation.

CoScan [18] offers a special scheduling framework that
merges the execution of Pig programs with common
data inputs in such a way that this data is only scanned
once. Authors augment Pig programs with a set of
(deadline, reward) options to achieve. Then they for-
mulate the schedule as an optimization problem and
offer a heuristic solution.

Morton et al. [12] propose ParaTimer: the progress
estimator for parallel queries expressed as Pig scripts [6].
In their earlier work [13], they designed Parallaz — a
progress estimator that aims to predict the completion
time of a limited class of Pig queries that translate into
a sequence of MapReduce jobs. In both papers, in-
stead of a detailed profiling technique that is designed
in our work, the authors rely on earlier debug runs of
the same query for estimating throughput of map and
reduce stages on the input data samples provided by
the user. The approach is based on precomputing the
expected schedule of all the tasks, and therefore iden-
tifying all the pipelines (sequences of MapReduce jobs)
in the query. The approach relies on a simplified as-
sumption that map (reduce) tasks of the same job have
the same duration. This work is closest to ours in pur-
suing the completion time estimates for Pig programs.
However, the usage of the FIFO scheduler and simpli-
fying assumptions limit the approach applicability for
progress estimation of multiple jobs running in the clus-
ter with a different Hadoop scheduler, especially if the
amount of resources allocated to a job varies over time
or differs from the debug runs that are used for mea-
surements.

7. CONCLUSION

Design of new job profiling tools and performance
models for MapReduce environments has been an ac-
tive research topic in industry and academia during
past few years. Most of these efforts were driven by
design of new schedulers to satisfy the job specific goals
and to improve cluster resource management. In our
work, we have introduced a novel performance model-
ing framework for processing Pig programs with dead-
lines. Our job profiling technique is not intrusive, it
does not require any modifications or instrumentation
of either the application or the underlying Hadoop/Pig
execution engines. The proposed approach enables au-
tomated SLO-driven resource sizing and provisioning
of complex workflows defined by the DAGs of MapRe-
duce jobs. Moreover, our approach offers an optimized
scheduling of concurrent jobs within a DAG that allows
to significantly reduce the overall completion time.
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Our performance models are designed for the case
without node failures. We see a natural extension for
incorporating different failure scenarios and estimating
their impact on the application performance and achiev-
able “degraded” SLOs. We intend to apply designed
models for solving a broad set of problems related to ca-
pacity planning of MapReduce applications (defined by
the DAGs of MapReduce jobs) and the analysis of var-
ious resource allocation trade-offs for supporting their

SLOs.
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