
SLO-Driven Right-Sizing and Resource Provisioning of
MapReduce Jobs ∗

Abhishek Verma
University of Illinois at
Urbana-Champaign

Urbana, IL, US.

verma7@illinois.edu

Ludmila Cherkasova
Hewlett-Packard Labs

Palo Alto, CA, US.

lucy.cherkasova@hp.com

Roy H. Campbell
University of Illinois at
Urbana-Champaign

Urbana, IL, US.

rhc@illinois.edu

ABSTRACT
There is an increasing number of MapReduce applications,
e.g., personalized advertising, spam detection, real-time event
log analysis, that require completion time guarantees or need
to be completed within a given time window. Currently,
there is a lack of performance models and workload analy-
sis tools available to system administrators for automated
performance management of such MapReduce jobs. In this
work, we outline a novel framework for SLO-driven resource
provisioning and sizing of MapReduce jobs. First, we pro-
pose an automated profiling tool that extracts a compact job
profile from the past application run(s) or by executing it
on a smaller data set. Then, by applying a linear regression
technique, we derive scaling factors to accurately project
the application performance when processing a larger data-
set. The job profile (with scaling factors) forms the basis of
a MapReduce performance model that computes the lower
and upper bounds on the job completion time. Finally, we
provide a fast and efficient capacity planning model that for
a MapReduce job with timing requirements generates a set
of resource provisioning options. We validate the accuracy
of our models by executing a set of realistic applications
with different timing requirements on the 66-node Hadoop
cluster.

1. INTRODUCTION
Many companies are following the new trend of using

MapReduce [1] and its open-source implementation Hadoop
for large-scale, data intensive processing and for mining peta-
bytes of data. Analyzing large amount of unstructured and
semi-structured data is a high priority task for many busi-
nesses. The e-commerce companies examine web sites’ traf-
fic and users’ navigation patterns to identify promising cus-
tomers who might be likely “buyers”. Banks and credit

∗

This work was largely completed during A. Verma’s internship at
HP Labs. R. Campbell and A. Verma are supported in part by NSF
CCF grants #0964471, IIS #0841765 and Air Force Research grant
FA8750-11-2-0084.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
LADIS 2011: The 5th Workshop on Large Scale Distributed Systems and
Middleware
Copyright 2011.

card companies analyze spending and purchasing patterns
to prevent fraud and identity theft. There is a slew of in-
teresting applications used for advanced data analytics in
call centers and for information management associated with
data retention, regulatory compliance, e-discovery and lit-
igation issues. Many organizations rely on the ability to
quickly process large quantities of new data to drive their
core business. Often, the application is a part of a business
pipeline (for example, see Facebook’s workflow [9]), and the
MapReduce job has to produce results by a certain time
deadline, i.e., it has to achieve certain performance goals
and service level objectives (SLOs). Currently, there is a
lack of efficient performance models and workload analysis
tools to ease performance management of MapReduce jobs.
Businesses struggle on their own with capacity planning and
resource sizing problems: they need to perform adequate ap-
plication testing, empirical jobs’ profiling and performance
evaluation, and then use this experience to estimate appro-
priate resources required for timely processing of their appli-
cations. In this work, we outline a novel framework to solve
this problem in a systematic way and to offer a resource siz-
ing and provisioning service in MapReduce environments.

First, we propose an automated profiling tool that ex-
tracts a compact job profile from the past application exe-
cution(s) in the production Hadoop cluster. The proposed
job profile aims to accurately reflect the application and
system performance during all phases of a given job: map,
shuffle/sort, and reduce phases. Alternatively, profiling can
be done by executing a given application with a smaller in-
put dataset than the original one. However, processing a
larger input dataset (while keeping the number of reduce
tasks unchanged) may lead to an increased amount of data
shuffled and processed per reduce task, and it may alter the
extracted application profile. A natural approach would be
to normalize the proposed profile to reflect the “processing
time per byte or unit of data” and then scale the application
profile according to the amount of processed data. However,
as we show in the paper, this approach does not work well
for MapReduce jobs and can lead to a significant prediction
error. Instead, by applying a linear regression technique, we
derive scaling factors for shuffle and reduce phases to accu-
rately estimate their service times as a function of processed
data.

Designing an efficient and accurate performance model of
a MapReduce job execution in the large-scale distributed
environment, like Hadoop, is a challenging task. At a first
glance, there are multiple factors and non-determinism in
the execution that might impact the performance of Map-



Reduce jobs. Does it mean that a simple analytic model
is impossible? Should a detailed simulation that closely re-
flects the functionality and settings of the underlying en-
vironment be used for completion time estimates? In this
work, we promote a bounds-based MapReduce performance
model. Since the non-determinism in task scheduling in-
evitably impacts the job completion time, we argue for a
simple and efficient model that computes the lower and up-
per bounds on job completion time instead of its accurate
prediction with a detailed simulation model.

Finally, we propose a fast and efficient capacity planning
procedure for estimating the required resources to meet a
given application SLO. It operates over the following inputs
i) a given job profile, ii) the amount of input data for pro-
cessing, iii) the required job completion time. The output
of the model is a set of plausible solutions (if such solutions
exist for a given SLO) with a choice of different numbers
of map and reduce slots that might be allocated for achiev-
ing performance goals of the application. We validate the
accuracy of our approach and performance models by pro-
cessing a set of realistic applications in the 66-node Hadoop
testbed: the measured job completion times are within 10%
of the given SLOs.

This paper is organized as follows. Section 2 introduces
our approach towards profiling MapReduce jobs, scaling the
job profile for processing an increased dataset, and presents
a bounds-based MapReduce performance model. The ef-
ficiency of our approach and the accuracy of the designed
model is evaluated in Section 3. We discuss how hetero-
geneity can be incorporated in our performance model in
Section 4. Section 5 describes the related work. Section 6
summarizes the paper and outlines future directions.

2. BOUNDS-BASED MAPREDUCE PERFOR-
MANCE MODEL

In this section, we outline our approaches for estimating
the job completion time and solving the inverse problem of
finding the appropriate amount of resources for a job that
needs to meet a given (soft) deadline.

2.1 Useful Theoretical Bounds
First, we establish the performance bounds for a makespan

(completion time) of a job represented as a set of n tasks
processed by k servers (or by k slots in MapReduce environ-
ments). The assignment of tasks to slots is done using an
online, greedy algorithm: assign each task to the slot which
finished its running task the earliest. Let avg and max be
the average and maximum duration of the n tasks respec-
tively.

Makespan Theorem: The job makespan under the greedy
task assignment is at least n · avg/k and at most (n − 1) ·
avg/k +max 1.

The difference between lower and upper bounds repre-
sents the range of possible job completion times due to non-
determinism and scheduling.

2.2 Completion Time Estimates of a MapReduce
Job

As motivated by the Makespan Theorem, in order to ap-
proximate the overall completion time of a MapReduce job,

1
Similar ideas were explored in the classic papers on scheduling, e.g.,

to characterize makespan bounds in [3]. For a formal proof, see [11].

we need to estimate the average and maximum task dura-
tions for different execution phases of the job, i.e., map,
shuffle/sort, and reduce phases. These metrics and timing
of different phases can be obtained from the counters at the
job master during the job’s execution or parsed from the
logs.

Let us consider job J that is partitioned into NJ
M map

tasks and NJ
R reduce tasks. Let J be already executed

in a given Hadoop cluster with some arbitrary number of
map/reduce slots. Below, we explain our profiling approach
and introduce the MapReduce performance model for esti-
mating the job completion time where J is executed with a
different amount of resources. Let SJ

M and SJ
R be the number

of map and reduce slots allocated to the future execution
of job J respectively.

The map stage consists of a number of map tasks. If
the number of tasks is greater than the number of slots, the
task assignment proceeds in multiple rounds, which we call
as waves. From the distribution of the map task durations of
the past run, we compute the average duration Mavg and the
maximum duration Mmax. Then by applying the Makespan
Theorem, the lower and upper bounds on the duration of
the entire map stage in the future execution with SJ

M map
slots (denoted as T low

M and T up
M respectively) are estimated

as follows:

T low
M = NJ

M ·Mavg/S
J
M (1)

T up
M = (NJ

M − 1) ·Mavg/S
J
M +Mmax (2)

The reduce stage consists of the shuffle/sort and reduce
phases. The shuffle phase begins only after the first map
task has completed. The shuffle phase completes when the
entire map stage is complete and all the intermediate data
generated by the map tasks has been shuffled to the reduce
tasks and has been sorted.

The shuffle phase of the first reduce wave may be sig-
nificantly different from the shuffle phase that belongs to
the next reduce waves. This happens because the shuffle
phase of the first reduce wave overlaps with the entire map
stage, and hence its depends on the number of map waves
and their durations. Therefore, from the past execution,
we extract two sets of measurements: (Sh1

avg, Sh
1
max) for

shuffle phase of the first reduce wave (called, first shuffle)
and (Shtyp

avg, Sh
typ
max) for shuffle phase of the other waves

(called, typical shuffle). Moreover, we characterize a first
shuffle in a special way and include only the non-overlapping
portion (with map stage) in our metrics: Sh1

avg and Sh1
max.

This way, we carefully estimate the latency portion that con-
tributes explicitly to the job completion time. The typical
shuffle phase is computed as follows:

T low
Sh =

(

NJ
R/S

J
R − 1

)

· Shtyp
avg (3)

T up

Sh =
(

(NJ
R − 1)/SJ

R − 1
)

· Shtyp
avg + Shtyp

max (4)

The reduce phase begins only after the shuffle phase is
complete. From the distribution of the reduce task durations
of the past run, we compute the average and maximum met-
rics: Ravg and Rmax. Similarly, Makespan Theorem can be
directly applied to compute the lower and upper bounds of
completion times of the reduce phase (T low

R , T up
R ) when a

different number of allocated reduce slots SJ
R is given.

Finally, we can put together the formulae for the lower



and upper bounds of job completion time:

T low
J = T low

M + Sh1
avg + T low

Sh + T low
R (5)

T up
J = T up

M + Sh1
max + T up

Sh + T up
R (6)

Note that we can re-write Eq. 5 for T low
J by replacing its

components with more detailed Eq. 1, Eq. 3 and similar
equations for reduce phase as shown below:

T low
J =

NJ
M ·Mavg

SJ
M

+
NJ

R·(Shtyp
avg+Ravg)

SJ
R

+ Sh1

avg−Shtyp
avg (7)

This allows us to express the estimates for completion time
as a function of map/reduce tasks (NJ

M , NJ
R) and the allo-

cated map/reduce slots (SJ
M , SJ

R):

T low
J = Alow

J ·
NJ

M

SJ
M

+Blow
J ·

NJ
R

SJ
R

+Clow
J (8)

where Alow
J = Mavg, B

low
J = (Shtyp

avg + Ravg), and Clow
J =

Sh1
avg − Shtyp

avg .
The equation for T up

J can be written similarly using Equa-
tions 4 and 6.

2.3 Scaling Factors
In the previous section, we show how the job profile can be

extracted from the past run of the application on the entire
dataset. Alternatively, profiling can be done by executing
a given application with a smaller input dataset than the
original one. However, processing a larger input dataset
(while keeping the number of reduce tasks unchanged) may
lead to the increased durations of the reduce tasks as the
size of the intermediate data processed by each reduce task
increases. The duration of the map tasks is not impacted
because this larger dataset is split into a larger number of
map tasks but each map task processes a similar portion of
data.

Note, that the shuffle phase duration mainly depends on
the network performance. The reduce phase duration de-
pends on the user supplied reduce function and the disk
write performance. Consequently, we derive two scaling fac-
tors for shuffle and reduce phases separately, each one as a
function of the processed dataset size.

We extend the job profile by extracting an additional met-
ric: SelectivityM that defines the ratio of the map output
size to the map input size. It is used to estimate the amount
of intermediate data produced by the map stage as input to
the reduce stage.

We perform a few experiments (i = 1, 2, ..., k) with a given
MapReduce job for processing different size input datasets
(while keeping the number of reduce tasks constant), and
collect the job profile measurements. Let Di be the amount
of intermediate data processed per reduce task, and let Shtyp

i,avg

and Ri,avg be the job profile measurements for shuffle and
reduce phases respectively. We apply a linear regression to
solve the following set of equations:

CSh
0 + CSh

1 ·Di = Shtyp
i,avg, (i = 1, 2, · · · , k)

CR
0 + CR

1 ·Di = Ri,avg, (i = 1, 2, · · · , k)

Derived scaling factors (CSh
0 , CSh

1 ) for shuffle phase and
(CR

0 , CR
1 ) for reduce phase are incorporated in the job pro-

file. When job J processes an input dataset that leads to
a different amount of intermediate data Dnew per reduce
task, its profile is updated as Shtyp

avg = CSh
0 + CSh

1 · Dnew

and Ravg = CR
0 +CR

1 ·Dnew . Similar scaling factors can be
derived for maximum durations Shtyp

max and Rmax as well as
for the first shuffle.

2.4 SLO-based Resource Provisioning
In this section, we address the inverse problem: given a

MapReduce job J with input dataset D, how many map and
reduce slots (SJ

M , SJ
R) should be allocated to this job so that

it finishes within time T . We outline an efficient and fast
algorithm that provides a compact answer to this question.

Note that there are different choices for navigating the
resource provisioning algorithm: the SLO-time T is targeted
as i) the lower bound of the job completion time, ii) the upper
bound of the job completion time, or iii) some combination
of lower and upper bounds.

Let T be targeted as the lower bound of the job comple-
tion time. Let input dataset D be partitioned for processing
in NJ

M map tasks and NJ
R reduce tasks. First, the algorithm

sets SJ
M to the largest possible map slots allocation in the

cluster (by considering the number of map tasks for process-
ing NJ

M and the maximum number of map slots SM in the
cluster). By using computed allocation SJ

M , we can derive
the required allocation of reduce slots SJ

R from Eq. 8. If a
found value of SJ

R is positive and less than the overall num-
ber of reduce slots available in the system, then the pair
(SJ

M , SJ
R) represents a feasible solution for achieving a given

SLO. If a found value of SJ
R is negative or higher than SR

then it means that job J can not be completed within T
with allocated map slots SJ

M .
If a feasible solution (SJ

M , SJ
R) is found, the algorithm

performs the next iteration by decreasing the number of
map slots by 1. This way, the algorithm sweeps through
the entire range of map slot allocations and finds the cor-
responding values of reduce slots for completing J within
time T . The algorithm is linear in the number of map slots
(O(min(NJ

M , Sm)).
The case when T is targeted as the upper bound (or the

bounds combination) is handled similarly.
Note the following monotonicity property for MapReduce

environments: by allocating a greater number of map/reduce
slots than the computed number (SJ

M , SJ
R), one can only de-

crease the job completion time.

3. EVALUATION
We perform our experiments on 66 HP DL145 GL3 ma-

chines. Each machine has four AMD 2.39GHz cores, 8 GB
RAM and two 160GB hard disks (7200rpm SATA). The ma-
chines are set up in two racks and interconnected with Gi-
gabit Ethernet. We use Hadoop 0.20.2 with two machines
as the job master and the DFS master. The remaining 64
machines are used as worker nodes, each configured with a
single map and reduce slot (since data disk is a bottleneck).
The blocksize of the file system is set to 64MB and the repli-
cation level is set to 3. We disabled speculation as it did not
lead to any significant improvements. To validate our mod-
els, we use four representative MapReduce applications:

1. Twitter: This application uses the 25GB twitter data-
set created by Kwak et. al. [5] containing an edge-list
of twitter userids. Each edge (i, j) means that user
i follows user j. The Twitter application counts the
number of asymmetric links in the dataset, that is,
(i, j) ∈ E, but (j, i) /∈ E.



2. Sort: The Sort application sorts 64 GB of data gen-
erated using random text writer in GridMix22. It uses
identity map and reduce tasks, since the framework
performs the actual sorting.

3. WikiTrends: We use the data from Trending Top-
ics3 with Wikipedia article traffic logs collected and
compressed every hour. Our MapReduce application
computes a visitor count for each article.

4. WordCount: It counts the word frequencies in 27 GB
of Wikipedia article text corpus. The map task to-
kenizes each line into words, while the reduce task
counts the occurrence of each word.

In our first set of experiments, we estimate the job comple-
tion times when the job is executed with different numbers
of map and reduce slots. Initially, we build a job profile from
the job execution with 64 map and 32 reduce slots. Using
the extracted job profile and applying formulae described in
Section 2, we predict each job completion time for the job
execution with 32 map and 16 reduce slots across 5 trials.
The results are summarized in Fig. 1.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Twitter Sort WikiTrends WordCount

T
im

e 
(in

 s
ec

on
ds

)

Job Executions

Predicted min (TJ
min)

Measured
Predicted max (TJ

max)

Figure 1: Predicted vs measured completion times
for four applications (using historic profiling of the
past runs of same job).

We observe that the measured completion time falls in be-
tween the computed lower and upper bounds. The comple-
tion time predicted as the average of low and upper bounds
might be the closest estimate for the measured job comple-
tion time.

In our second set of experiments, we execute our applica-
tions on gradually increasing datasets with a fixed number
of reduce tasks for each job. Our intent is to measure the
trend of the shuffle and reduce phase durations (average and
maximum) and validate the linear regression approach pro-
posed in Section 2.3 for deriving the scaling factors. Fig. 2
shows that the trends for WordCount are indeed linear 4.
While we show multiple points in Fig. 2, typically, at least
two points are needed for deriving the scaling factors. The
accuracy improves with accumulated execution points. A
10% sample of the original dataset used for profiling leads
to accurate results.

Alternatively, we tried a simple approach that scales the
job profile according to the amount of processed data. How-
ever, it did not work well as the measured trends shown in
Fig. 2 are not directly proportional to the processed dataset
size.

2
http://hadoop.apache.org/mapreduce/docs/current/gridmix.html

3
http://trendingtopics.org

4
The results for WikiTrends, Twitter and Sort are similar.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  10  20  30  40  50

D
ur

at
io

n 
(in

 s
ec

on
ds

)

Size of input data set (in GB)

Shuffle Avg
Shuffle Max
Reduce Avg
Reduce Max

Figure 2: WordCount: scaling factors of shuffle and
reduce durations.

Now, we evaluate the approach, where the job profile is
built using small size input datasets, and then this job pro-
file is used for predicting the completion time of the same
application processing a larger input dataset. Therefore, in
these experiments, first, the job profiles are built using the
three trials on small datasets (e.g., 4.3, 8.7 and 13.1 GB
for WordCount) with different numbers of map and reduce
slots.

After that, by applying linear regression to the extracted
job profiles from these runs, we determine the scaling factors
for shuffle and reduce phases of our MapReduce jobs.

These scaling factors are used for extrapolating the shuf-
fle and reduce phase durations when the same applications
are processing larger input datasets with the following pa-
rameters: By using the updated (scaled) job profiles and

Parameters Twitter Sort WT WC

# of map tasks 370 1024 168 425

# of reduce tasks 64 64 64 64

# of map slots 64 64 64 64

# of reduce slots 16 32 8 8

Table 1: Application Parameters for Twitter, Sort,
WikiTrends (WT) and WordCount (WC)

applying the formulae described in Section 2, we predict the
job completion times for processing these larger datasets.
Fig. 3 shows the results of these experiments. The red error

 0

 100

 200

 300

 400

 500

 600

 700

 800

Twitter Sort WikiTrends WordCount

T
im

e 
(in

 s
ec

on
ds

)

Job Executions

Predicted min (TJ
min)

Measured
Predicted max (TJ

max)

Figure 3: Predicted vs measured completion times
for four applications (applying scaling factors to pro-
filing executions on smaller data sets).



 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70

N
um

be
r 

of
 r

ed
uc

e 
sl

ot
s

Number of map slots

Lower bound
Average

Upper bound

(a) Resource allocation curves.

 0

 100

 200

 300

 400

 500

 600

 0  2  4  6  8  10  12  14  16

Jo
b 

co
m

pl
et

io
n 

tim
e 

(in
 s

ec
on

ds
)

Different executions

SLO
Lower bound based

Average based
Upper bound based

(b) Can we meet the deadline with projected resource allo-
cations?

Figure 4: SLO-based resource provisioning for WordCount.

bars show the variation in measured times across 5 trials.
We observe that our model accurately bounds the mea-

sured job completion time. If we use the average of lower
and upper bounds (denoted T avg

J ) for prediction, then the
relative error between T avg

J and the measured job comple-
tion time is less than 10% in all cases.

Finally, we perform experiments to validate the accuracy
of the SLO-based resource provisioning model introduced in
Section 2.4. We aim to evaluate the accuracy of resource
allocations recommended by the model for completing the
job within a given deadline.

Fig. 4 (a) shows a variety of plausible solutions (the out-
come of the SLO-based model) for WordCount with a given
deadline D= 8 minutes. The X and Y axes of the graph
show the number of map and reduce slots respectively that
need to be allocated in order to meet the job’s deadline.
There are three curves that correspond to the computation
when given time T is targeted as the lower, upper, or the
average of the lower and upper bounds. As expected, the
recommendation based on the upper bound (worst case sce-
nario) suggests more aggressive resource allocations with a
higher number of map and reduce slots as compared to the
resource allocation based on the lower bound. The difference
in resource allocation is influenced by the “gap” between the
lower and upper bounds.

Next, we sample each curve in Fig. 4 (a), and execute
WordCount with recommended allocations of map and re-
duce slots in our 66-node Hadoop cluster to measure the ac-
tual job completion times. Fig. 4 (b) summarizes the results
of these experiments. The model based on lower bounds
suggests insufficient resource allocations: almost all the job
executions with these allocations have missed their dead-
line. The closest results are obtained if we use the model
that is based on the average of lower and upper bounds of
completion time. If we base our computation on the upper
bounds of completion time, the model over provisions re-
sources. While all the job executions meet their deadline,
the measured job completion times are lower than the tar-
get SLO, often by as much as 20%. The resource allocation
choice will depend on the user goals and his requirements
on how close to a given SLO the job completion time should
be. The user considerations might also take into account the
service provider charging schema to evaluate the resource al-
location alternatives on the curves shown in Fig. 4 (a).

4. DISCUSSION
Originally, Hadoop was designed for homogeneous envi-

ronment. There has been recent interest [12] in heteroge-
neous MapReduce environments. While in this work, we
present our results using a homogeneous Hadoop cluster,
our approach will work in heterogeneous MapReduce envi-
ronments. In a heterogeneous cluster, the slower nodes will
be reflected by the longer tasks durations, and they all would
contribute to the average and maximum task durations in
the job profile. Although we do not explicitly consider dif-
ferent types of nodes, their performance is reflected in the
job profile and can be used in the future prediction. When
the percentage of heterogeneous nodes is the same in the
experiments for building a job profile with a smaller dataset
and later for running the job with a larger dataset then the
results would be accurate. So, while we do not explicitly
target the heterogeneous environment, our approach should
efficiently work in heterogeneous Hadoop clusters as well.

In this paper, we presented profiling and experimental
results for jobs run in the Hadoop cluster in isolation. How-
ever, in our earlier work [11], we applied similar job profiling
ideas while designing the SLO-based scheduler for process-
ing multiple (concurrent) jobs with user-specified deadlines.
While in some cases we did observe a higher prediction er-
ror (up to 20%), most of the time, the predictions for job
completion time were within 10% of the measured ones in
the testbed on average.

The accuracy of the results depends on the resource con-
tention, especially, the network contention in production
Hadoop clusters. In our testbed, the network was not a
bottleneck, and it led to the accurate prediction results for
job completion time. Typically, service providers tend to
over provision network resources to avoid undesirable side ef-
fects of network contention. However, for very large Hadoop
clusters it is a challenge. It is an interesting modeling ques-
tion whether a network contention factor can be introduced,
measured, and incorporated in the proposed performance
models.

5. RELATED WORK
There are several research efforts to design job progress

estimators for predicting the job completion time.
Polo et al. [8] introduce an online job completion time

estimator which can be used for adjusting the resource al-



locations of different jobs. However, their estimator tracks
the progress of the map stage alone and has no information
or control over the reduce stage.

Ganapathi et al. [2] use Kernel Canonical Correlation Anal-
ysis to predict the performance of MapReduce workloads.
However, they concentrate on Hive queries and do not at-
tempt to model the actual execution of the MapReduce job.
The authors discover the feature vectors to characterize Hive
queries through statistical correlation.

Morton et al. [6] propose ParaTimer for estimating the
progress of parallel queries expressed as Pig scripts [7] that
can translate into directed acyclic graphs (DAGs) of Map-
Reduce jobs. However, instead of a detailed profiling tech-
nique that is designed in our work, the authors rely on earlier
debug runs of the same query for estimating throughput of
map and reduce stages on the input data samples provided
by the user. The approach is based on precomputing the ex-
pected schedule of all the tasks. Usage of the FIFO scheduler
limits the approach applicability for progress estimation of
multiple jobs running in the cluster with a different Hadoop
scheduler.

Kambatla et al [4] have focused on optimizing the Hadoop
configuration parameters (number of map and reduce slots
per node) to improve MapReduce program performance. A
signature-based (fingerprint-based) approach is used to pre-
dict the performance of a new MapReduce program using a
set of already studied programs.

Tian and Chen [10] propose an interesting approach to
predict MapReduce program performance from the test runs
with a smaller number of nodes. By the problem definition it
is the closest work to ours. However, the proposed approach
is significantly different from our solution. The authors con-
sider a very fine granularity of MapReduce processing. For
example, the map task is partitioned in 4 functions: read a
block, map function processing of the block, partition and
sort of the processed data, and the combiner step (if it is
used). The reduce task is decomposed in 4 functions as
well. Then using a linear regression technique, the cost (du-
ration) of each function is approximated. These functions
are used for predicting the larger dataset processing. There
are a few simplified assumptions introduced by the authors,
e.g., a single wave in the reduce stage. In our approach, we
derive the job profile from the job processing logs that are
readily available at any Hadoop system. This provides reli-
able measurements of task durations, and enables a simple
and intuitive performance model. Our solution for finding
resource allocations that support the job completion goals
is also different from the approach proposed in [10]. They
formulate it as an optimization problem that can be solved
with existing commercial solvers. Our approach does not
require any additional external tools.

In our earlier work [11], we proposed a framework, called
ARIA [11], for a Hadoop deadline-based scheduler. This
scheduler extracts and utilizes the job profiles from the past
executions. The shortcoming of the earlier work is that it
does not have scaling factors to adjust the extracted profile
and lacks the ability for job profiling on smaller datasets. In
the current work, we propose a general profiling approach
and a more advanced resource provisioning model with a
variety of different options that offers to service providers a
set of interesting trade-offs.

6. CONCLUSION
In this work, we outlined a novel framework with per-

formance models and job profiling tools that aim to enable
the automated workload management of MapReduce jobs
with timing requirements. These models can also be used
for more traditional capacity planning and resource provi-
sioning tasks. The proposed approach is simple, intuitive
and efficient, it aims to assist the system administrators in
their performance evaluation and MapReduce cluster man-
agement efforts.

The proposed performance models were designed for the
case without node failures. The next step is to extend the
approach for incorporating different failure scenarios and es-
timating their impact on the application performance and
achievable “degraded” SLOs. Another interesting future
work is the resource provisioning and meeting SLO require-
ments of more complex applications (e.g., Pig queries) that
are defined as a composition of MapReduce jobs.

7. REFERENCES
[1] J. Dean and S. Ghemawat. MapReduce: Simplified

data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[2] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and
D. Patterson. Statistics-driven workload modeling for
the cloud. In Proceedings of SMDB, 2010.

[3] R. Graham. Bounds for certain multiprocessing
anomalies. Bell System Tech. Journal, 45, 1966.

[4] K. Kambatla, A. Pathak, and H. Pucha. Towards
optimizing hadoop provisioning in the cloud. In Proc.
of the First Workshop on Hot Topics in Cloud
Computing, 2009.

[5] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In Proc.
of Intl. Conference on World Wide Web. ACM, 2010.

[6] K. Morton, M. Balazinska, and D. Grossman.
ParaTimer: a progress indicator for MapReduce
DAGs. In Proc. of SIGMOD. ACM, 2010.

[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In Proc. of SIGMOD. ACM, 2008.

[8] J. Polo, D. Carrera, Y. Becerra, J. Torres,
E. Ayguadé, M. Steinder, and I. Whalley.
Performance-driven task co-scheduling for MapReduce
environments. In 12th IEEE/IFIP NOMS, 2010.

[9] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur,
N. Jain, J. Sen Sarma, R. Murthy, and H. Liu. Data
warehousing and analytics infrastructure at Facebook.
In Proc. of SIGMOD, pages 1013–1020. ACM, 2010.

[10] F. Tian and K. Chen. Towards Optimal Resource
Provisioning for Running Ma pReduce Programs in
Public Clouds. In Proc. of IEEE Conference on Cloud
Computing (CLOUD 2011), 2011.

[11] A. Verma, L. Cherkasova, and R. Campbell. ARIA:
Automatic Resource Inference and Allocation for
MapReduce Environments. In Proc. of 8th
IEEE/ACM Intl. Conference on Autonomic
Computing (ICAC), June, 2011.

[12] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in
heterogeneous environments. In OSDI, 2008.


