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Abstract—Large-scale MapReduce clusters that routinely
process petabytes of unstructured and semi-structured data
represent a new entity in the changing landscape of clouds. A
key challenge is to increase the utilization of these MapRe-
duce clusters. In this work, we consider a subset of the
production workload that consists of MapReduce jobs with no
dependencies. We observe that the order in which these jobs
are executed can have a significant impact on their overall
completion time and the cluster resource utilization. Our goal
is to automate the design of a job schedule that minimizes the
completion time (makespan) of such a set of MapReduce jobs.
We offer a novel abstraction framework and a heuristic, called
BalancedPools, that efficiently utilizes performance properties
of MapReduce jobs in a given workload for constructing an
optimized job schedule. Simulations performed over a realistic
workload demonstrate that 15%-38% makespan improvements
are achievable by simply processing the jobs in the right order.1

Keywords-MapReduce, Hadoop, batch workloads, optimized
schedule, minimized makespan.

I. INTRODUCTION

As cloud computing continues to evolve, an increas-

ing number of companies are exploiting the MapReduce

paradigm and its open-source implementation Hadoop as a

scalable platform for Big Data processing. The data analysis

applications range in functionality, complexity, resource

needs, and data delivery deadlines. This diversity creates

competing requirements for program design, job scheduling,

and workload management policies in MapReduce environ-

ments. However, in spite of different user objectives one goal

is common: to improve the usability and performance of the

MapReduce framework.

The job execution efficiency is particularly important

for processing production workloads when a given set of

MapReduce jobs and workflows needs to be executed peri-

odically on new data. Typically, the default FIFO scheduler

is used for processing production jobs since the primary

performance objective is to minimize the overall execution

time (makespan) of a given set. Such production workloads

are analyzed off-line for optimizing their execution. To

ease the task of writing complex analytics programs, high-

level SQL-like abstractions such as Pig and Hive have

been proposed. There is a slew of optimization methods

introduced for improving data read/write efficiency in a set

of production jobs. For different MapReduce jobs operating

1This work was completed during A. Verma’s internship at HP Labs.
R. Campbell and A. Verma are supported in part by NSF CCF grants
#0964471, IIS #0841765 and Air Force Research grant FA8750-11-2-0084.

over the same dataset, a more efficient job scheduling [1]

proposes merge their executions so that the input data is

only scanned once.

In this work, we consider a subset of a production

workload formed by the jobs with no dependencies. Such

independent jobs arise, for example, while processing dif-

ferent datasets, or optimized Pig/Hive queries resulting in a

single MapReduce job2. We discuss a different cause for a

job execution inefficiency inherent to the MapReduce com-

putation that processes map and reduce tasks separated by a

synchronization barrier. The order in which jobs are executed

can have a significant impact on the overall processing

time, and therefore, on the achieved cluster utilization. For

data-dependent jobs, the successive job can only start after

the current one is entirely finished. However, for data-

independent jobs, once the previous job completes its map

stage and begins the reduce stage, the next job can start

executing its map stage with the released map resources in a

pipelined fashion. Thus, there is an overlap in job executions

when different jobs use complementary cluster resources:

map and reduce slots. Note that a larger overlap in job

executions leads to better job pipelining, increased cluster

utilization, and an improved execution time, while using the

same number of machines (and thus for free).

We introduce a simple abstraction of a MapReduce job

as a pair of its map and reduce stage durations. This

representation enables us to apply the classic Johnson algo-

rithm [2] that was designed for building an optimal two-stage

job schedule. Since the set of production jobs is executed

periodically, it permits their automated profiling from past

executions. When jobs in a batch need to process new

datasets, we use the knowledge of extracted job profiles

to pre-compute new estimates of jobs’ map and reduce

stage durations, and then construct an optimized schedule

for future executions. We evaluate performance benefits of

the constructed schedule through extensive simulations over

a variety of realistic workloads. The performance results

are workload and cluster-size dependent, but we typically

achieve up to 10%-25% makespan improvements.

However, the proposed abstraction obscures the amount of

resources each job may be able to utilize, and in some cases,

Johnson’s schedule may lead to a suboptimal makespan. We

design BalancedPools, a novel heuristic that efficiently uti-

211 out of 17 PigMix queries (http://wiki.apache.org/pig/PigMix) trans-
late to a single independent MapReduce job.



lizes characteristics and properties of MapReduce jobs in a

given workload for constructing the optimized job schedule.

We evaluate the performance benefits of the constructed

schedule through simulations over a variety of realistic

workloads. The detailed evaluation of the proposed heuristic

demonstrates makespan improvements of up to 15%-38%

for situations where Johnson’s schedule is suboptimal. The

results of our simulation study are validated through exper-

iments on a 66-node Hadoop cluster. The remainder of the

paper presents our results in more detail.

II. BACKGROUND: JOB PROFILES AND MAPREDUCE

PERFORMANCE MODEL

This work continues a direction initiated in ARIA [3].

This model can be used for predicting the completion time

of the map and reduce stages as a function of the input

dataset size and allocated resources.

ARIA introduces a MapReduce performance model that is

based on useful theoretical performance bounds described

as follows. Let us consider a job that is represented as a

set of n tasks processed by k servers (or by k slots in

MapReduce environments). The assignment of tasks to slots

is done using an online, greedy algorithm: assign each task

to the slot which finished its running task the earliest. Let

avg and max be the average and maximum duration of

the n tasks respectively. Then the job makespan (the job

completion time) under the greedy task assignment is rticle

traffic logs that were collected (and compressed) every hour.

WikiTrends counts the number of times each article has been

visited in the given input dataset, i.e., the article access

frequency (popularity count) over time. The example’s input

dataset has 71 files that correspond to 71 map tasks, and

the application is defined with 64 reduce tasks. Figure 1

shows the WikiTrends execution with 16 map and 16 reduce

slots. Therefore, the job execution has 5 map waves (that

comprise the map stage) and 4 reduce waves (that constitute

the reduce stage). The first shuffle may overlap with a

significant portion of the map stage. At the same time, there

is a strict barrier between map and reduce task processing: a

reduce task execution may only start when all map tasks are

completed and the intermediate data has been shuffled to the

reducer. We aim to define the job execution time as the sum

of the complementary, non-overlapping map and reduce

stage execution times.

Let us consider job J that is partitioned into NJ
M map

tasks and NJ
R reduce tasks. Let J be already executed in a

given Hadoop cluster. Below, we explain both our profiling

approach and the proposed MapReduce performance model

for estimating the job completion time as a function of

allocated resources. Let SJ
M and SJ

R be the number of map

and reduce slots allocated to the future execution of job J .
The map stage consists of a number of map tasks. If the

number of tasks is greater than the number of slots, the task

assignment proceeds in multiple rounds, which we call as

waves. From the distribution of the map task durations of

the past run, we compute the average duration Mavg and

the maximum duration Mmax. Then the lower and upper

bounds on the duration of the entire map stage in the future

execution with SJ
M map slots (denoted as T low

M and Tup
M

respectively) are estimated as follows:

T low
M = NJ

M/SJ
M ·Mavg

Tup
M = (NJ

M − 1)/SJ
M ·Mavg/S

J
M +Mmax

The reduce stage consists of the shuffle and reduce phases,

and their execution time bounds can be computed similarly.

The shuffle phase begins only after the first map task has

completed. The shuffle phase completes when the entire map

stage is complete and all the intermediate data generated by

the map tasks has been shuffled to the reduce tasks and has

been sorted. The shuffle phase of the first reduce wave may

be significantly different from the shuffle phase that belongs

to the next reduce waves. This happens because the shuffle

phase of the first reduce wave overlaps with the entire map

stage, and hence its depends on the number of map waves

and their durations. Therefore, from the past execution, we

extract two sets of measurements: (Sh1
avg, Sh

1
max) for

shuffle phase of the first reduce wave (called, first shuffle)

and (Shtyp
avg, Sh

typ
max) for shuffle phase of the other waves

(called, typical shuffle). Moreover, we characterize a first

shuffle in a special way and include only the non-overlapping

portion (with map stage) in our metrics: Sh1
avg and Sh1

max.

This way, we carefully estimate the latency portion that

contributes explicitly to the job completion time. The typical

shuffle phase is computed as follows:

T low
Sh =

(

NJ
R/S

J
R − 1

)

· Shtyp
avg

Tup
Sh =

(

(NJ
R − 1)/SJ

R − 1
)

· Shtyp
avg + Shtyp

max

The reduce phase begins only after the shuffle phase is

complete. From the distribution of the reduce task durations

of the past run, we compute the average and maximum

metrics: Ravg and Rmax that are used to compute the lower

and upper bounds of completion times of the reduce phase.

Finally, we can put together the lower and upper bounds of

the entire reduce stage (T low
R , Tup

R ) by summing up durations

of shuffle and reduce phases.

T low
R = Sh1

avg + T low
Sh + (NJ

R ·Ravg/S
J
R)

Tup
R = Sh1

max + Tup
Sh + ((NJ

R − 1) ·Ravg/S
J
M +Rmax)

Typically, the average of lower and upper bounds is a good

approximation of the stage completion time:

T avg
M = (T low

M + Tup
M )/2 and T avg

R = (T low
R + Tup

R )/2.

For the rest of the paper, we use T avg
M and T avg

R as the

estimates of the map and reduce stage execution time.
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Figure 1. WikiTrends application executed in a Hadoop cluster with 16 map and 16 reduce slots.

III. OPTIMIZED BATCH SCHEDULING

In this section, we discuss the problem of minimizing

the overall completion time for a given set of MapReduce

jobs. We present a simple but effective abstraction of the

MapReduce job execution that enables us to apply the

classic Johnson algorithm for building an optimized job

schedule. Then we discuss possible inefficiencies of this

abstraction and a novel heuristic as an alternative solution

for an optimized schedule of a given set of MapReduce jobs.

A. Problem Definition

Each MapReduce job consists of a specified number of

map and reduce tasks. The job execution time and specifics

of the execution depend on the amount of resources (map

and reduce slots) allocated to the job. Section II presents

an example of Wikitrends application processing. Figure 1

shows a detailed visualization of how 71 map and 64 reduce

tasks of this application are processed in the Hadoop cluster

with 16 map and 16 reduce slots. Instead of the detailed

job execution at the task level, we introduce a simple

abstraction, where each MapReduce job Ji is defined by

durations of its map and reduce stages mi and ri, i.e.,

Ji = (mi, ri). Section II presents our profiling approach and

performance model for computing the estimates of average

map and reduce stage durations when the job is executed on

a new dataset. This model is applied to derive the proposed

new abstraction Ji = (mi, ri).
Let us consider the execution of two (independent)

MapReduce jobs J1 and J2 in a Hadoop cluster with a

FIFO scheduler. There are no data dependencies between

these jobs. Therefore, once the first job completes its map

stage and begins reduce stage processing, the next job can

start its map stage execution with the released map resources

in a pipelined fashion (see Figure 2). There is an “overlap”

in executions of map stage of the next job and the reduce

stage of the previous one.

Figure 2. Pipelined execution of two MapReduce jobs J1 and J2.

We note an interesting observation about the execution

of such jobs. Some of the execution orders may lead to a

significantly less efficient resource usage and an increased

processing time. As a motivating example, let us consider

two independent MapReduce jobs that utilize all the given

Hadoop cluster’s resources and that result in the following

map and reduce stage durations: J1 = (20s, 2s) and J2 =

(2s, 20s). In the Hadoop cluster with the FIFO scheduler,

they can be processed in two possible ways:

(a) J1 is followed by J2.

(b) J2 is followed by J1.

Figure 3. Impact of different job schedules on overall completion time.

• J1 is followed by J2 (as shown in Figure 3 (a)). The

reduce stage of J1 overlaps with the map stage of J2
leading to overlap of only 2s. Thus, the total completion

time of processing two jobs is 20s+ 2s+ 20s = 42s.
• J2 is followed by J1 (as shown in Figure 3 (b)). The

reduce stage of J2 overlaps with the map stage of

J1 leading to a much better pipelined execution and

a larger overlap of 20s. Thus, the total makespan is

2s+ 20s+ 2s = 24s.

Thus, there can be a significant difference in the overall job

completion time (75% in the example above) depending on

the execution order of the jobs.

We consider the following problem. Let J =
{J1, J2, . . . , Jn} be a set of n MapReduce jobs with no

data dependencies between them. We aim to determine an

order (a schedule) of execution of jobs Ji ∈ J such that the

makespan of the entire set is minimized.

B. Johnson’s Algorithm

In 1953, Johnson [2] proposed an optimal algorithm for

two stage production schedule. In the original problem

formulation, a set of production items and two machines

(S1 and S2) are given. Each item must pass through stage

one that is served by machine S1, and then stage two that is

served by machine S2. Each machine can handle only one

item at a time. The production item i in the set is represented

by two positive3 numbers (s1i , s
2
i ) that define service times

for the item to pass through stages one and two respectively.

There is a striking similarity between the problem formu-

lation described above and the problem that we would like

to solve: building a schedule that minimizes the makespan

of a given set of MapReduce jobs. We can represent each

MapReduce job Ji in our batch set J by a pair of computed

durations (mi, ri) of its map and reduce stages, and these

stage durations fairly define the “busy” processing times

3In fact, Johnson’s schedule is also optimal for the case when s
2
i
= 0.



by the map and reduce slots respectively. This abstraction

enable us to apply Johnson’s algorithm (offered for building

the optimal two-stage jobs’ schedule) to our scheduling

problem for a set of MapReduce jobs. Now, we explain the

essence of Johnson’s algorithm in terms of MapReduce jobs.

Let us consider a collection J of n jobs, where each job

Ji is represented by the pair (mi, ri) of map and reduce

stage durations respectively. Let us augment each job Ji =
(mi, ri) with an attribute Di that is defined as follows:

Di =

{

(mi, m) if min(mi, ri) = mi,

(ri, r) otherwise.

The first argument in Di is called the stage duration and

denoted as D1
i . The second argument is called the stage

type (map or reduce) and denoted as D2
i .

Algorithm 1 shows how an optimal schedule can be

constructed using Johnson’s algorithm. First, we sort all the

n jobs from the original set J in the ordered list L in

such a way that job Ji precedes job Ji+1 if and only if

min(mi, ri) ≤ min(mi+1, ri+1). In other words, we sort

the jobs using the stage duration attribute D1
i in Di (it

represents the smallest duration of the two stages). Then

the algorithm works by taking jobs from list L and placing

them into the schedule σ from the both ends (head and

tail) and proceeding towards the middle. If the stage type

in Di is m, i.e., represents the map stage, then the job Ji
is placed from the head of the schedule, otherwise from the

tail. The complexity of Johnson’s Algorithm is dominated

by the sorting operation and thus is O(n log n).

Algorithm 1 Johnson’s Algorithm

Input: A set J of n MapReduce jobs. Di is the attribute of job
Ji as defined above.
Output: Schedule σ (order of jobs execution.)

1: Sort the original set J of jobs into the ordered list L using
their stage duration attribute D1

i

2: head← 1, tail← n
3: for each job Ji in L do
4: if D2

i = m then
5: // Put job Ji from the front
6: σhead ← Ji, head ← head + 1
7: else
8: // Put job Ji from the end
9: σtail ← Ji, tail ← tail - 1

10: end if
11: end for

Let us illustrate the job schedule construction with John-

son’s algorithm for a simple example with five MapReduce

jobs shown in Figure 4. These jobs are augmented with

additional computed attribute Di shown in the last column.

At first, this collection of jobs is sorted into a list L
according to the attribute D1

i (i.e., first argument of Di).

The sorted list of jobs is shown in Figure 5. Then we

follow Johnson’s algorithm and start placing the jobs in the

schedule σ from both ends toward the middle, and construct

the following schedule:

Ji mi ri Di

J1 4 5 (4, m)

J2 1 4 (1, m)

J3 30 4 (4, r)

J4 6 30 (6, m)

J5 2 3 (2, m)

Figure 4. Example of five
MapReduce jobs.

Ji mi ri Di

J2 1 4 (1, m)

J5 2 3 (2, m)

J1 4 5 (4, m)

J3 30 4 (4, r)

J4 6 30 (6, m)

Figure 5. The ordered list L
of five MapReduce jobs.

• J2 is represented by D2=(1, m). Since D2
2 = m then J2

goes to the head of σ, and σ = (J2, ...).
• J5 is represented by D5=(1, m). Again, J5 goes to the

head of σ, and σ = (J2, J5, ...).
• J1 is represented by D1=(4, m), and it goes to the head

of σ, and σ = (J2, J5, J1, ...).
• J3 is represented by D3=(4, r). Since D2

3 = r then J3
goes to the tail of σ, and σ = (J2, J5, J1, ..., J3).

• J4 is represented by D4=(1, m) and it goes to the head

of σ, and σ = (J2, J5, J1, J4, J3).

Job ordering σ = (J2, J5, J1, J4, J3) defines Johnson’s

schedule for the job execution with the minimum overall

makespan. For our example, the makespan of the optimal

schedule is 47. The worst schedule is defined by the reverse

order of the optimal one, i.e., (J3, J4, J1, J5, J2). The worst
job schedule has a makespan of 78 (this is 66% increase

in the makespan compared to the optimal time). Indeed, the

optimal schedule may provide significant savings.

C. BalancedPools Heuristic Algorithm

While the simple abstraction for MapReduce jobs pro-

posed in Section III-B enables us to apply the elegant John-

son algorithm for constructing the optimized job schedule,

it raises the following questions about its abstraction:

• How well does this abstraction correspond to the reality

of complex execution of MapReduce jobs?

• How accurate is the computed makespan of Johnson’s

schedule for estimating the measured makespan of a given

set of MapReduce jobs?

• What are the situations where the generated Johnson

schedule might lead to suboptimal results?

When a MapReduce job is represented as a pair of map and

reduce stage durations, it obscures the number of tasks that

comprise the job’s map and reduce stages and the number

of slots that process these tasks. For example, Figure 1

shows how 71 map and 64 reduce tasks of Wikitrends

application are processed in the Hadoop cluster with 16

map and 16 reduce slots. Note, that the last, fifth wave of

the map stage has for processing only 7 tasks (71-16x4).

Thus, out of 16 available map slots only 7 slots are used

by the current application and the remaining 9 map slots

can be immediately used for processing of the next job.

Therefore, processing of the next job’s map stage may start

before the previous job completes its map stage. As a result,

the makespan computed by the Johnson algorithm might

be pessimistic compared to the real execution of the job

schedule on the Hadoop cluster. To provide better estimates

for the makespan of a given set of MapReduce jobs under



different job schedules, we use the MapReduce simulator

SimMR [4] that can faithfully replay MapReduce job traces

at the tasks/slots level: the completion times of simulated

jobs are within 5% of the original ones.

Let us revisit MapReduce job processing and discuss situ-

ations where Johnson’s schedule might provide a suboptimal

solution. Consider the set of five jobs shown in Figure 4 (see

Section III-B). Below we describe two different scenarios

that, in spite of their differences, lead to the same job profiles

and stage durations as shown in Figure 4. Therefore, if we

apply Johnson’s algorithm, it will produce the same schedule

σ = (J2, J5, J1, J4, J3) for minimizing the makespan of this

set. In both scenarios, we consider a Hadoop cluster with 30

worker nodes, each configured with a single map and single

reduce slot, i.e., with 30 map and 30 reduce slots overall.

Scenario1: Let each job in the set be comprised of 30 map

and 30 reduce tasks. Thus, each job utilizes either all map

or all reduce slots during its processing. In this scenario,

there is a perfect match between the assumptions of the

classic Johnson algorithm for two-stage production system

and MapReduce job processing.

Scenario2: Let jobs J1, J2, and J5 be comprised of 30

map and 30 reduce tasks, and jobs J3 and J4 consist of

20 map and 20 reduce tasks. Figure 6(a) visualizes the

execution of these five MapReduce jobs according to the

generated Johnson schedule σ = (J2, J5, J1, J4, J3).
We use a different color scheme for map (blue/dark) and

reduce (red/light) stages, the height of the stages reflects the

amount of resources used by the jobs, the width represents

the stage duration, the jobs appear at the time line as they

are processed by the schedule.

While the first three jobs J2, J5, and J1 utilize all map

and all reduce slots during their processing, the last two

jobs J4 and J3 only use 20 map and 20 reduce slots, and

hence map stage processing of J3 starts earlier than the map

stage of J4 is completed because there are 10 map slots

available in the system. The first 10 tasks of J3 are processed
concurrently with 20 map tasks of J4. When J4 completes

its map stage and releases 20 map slots, then the next 10 map

tasks of J3 get processed. However, this slightly modified

execution leads to the same makespan of 47 time units as

under Scenario1 because processing of J3’s reduce stage can
only start when the entire map stage of J3 is finished.

We claim that Johnson’s schedule for Scenario2 described

above is suboptimal, by outlining a better solution. Let us

partition these five jobs into two pools with a tailored amount

of cluster resources allocated to each pool:

1) Pool1 with J1, J2, and J5 (10x10 map/reduce slots);

2) Pool2 with J3 and J4 ( 20x20 map/reduce slots).

First of all, a different amount of resources allocated to

jobs in Pool1 changes these jobs’ map and reduce stage

durations. Each of these jobs has 30 map and 30 reduce tasks

for processing. When these 30 tasks are processed with 10

slots, the execution takes three times longer: both map and

reduce stages are processed in three waves, compared with

(a)

(b)

Figure 6. Example with five MapReduce jobs: (a) job processing with
Johnson’s schedule; (b) an alternative solution with BalancedPools.

a single wave for the stage execution with 30 slots. For jobs

in each pool, we apply Johnson’s algorithm to generate the

optimized schedules:

1) Pool1 is processed according to σ1 = (J2, J5, J1).
This schedule results in the makespan of 39 time units;

2) Pool2 is executed according to σ2 = (J4, J3). This
schedule results in the makespan of 40 time units.

Figure 6(b) visualizes the job execution of these two pools.

Jobs in Pool1 and Pool2 are processed concurrently (each

set follows its own schedule). The cluster resources are

partitioned between the two pools in a tailored manner.

Using this approach, the overall makespan for processing

these five jobs is 40 time units, that is almost 20% improve-

ments compared to 47 time units using Johnson’s sched-

ule. This example exploits additional properties specific to

MapReduce environments and the execution of MapReduce

jobs. In particular, the job stage durations closely depend

on the amount of allocated resources (map and reduce

slots). In this way, we can change the jobs’ appearance.

The main objective function of such an algorithm is to

partition the jobs into two pools with specially tailored

resource allocations such that the makespan of jobs in these

pools are balanced, and the overall completion time of jobs

in both pools is minimized. In general, the problem of

balancing the map and reduce tasks in slots to achieve the

minimum makespan for a set of MapReduce jobs is NP-

hard. This can be easily proved by a simple polynomial

reduction from the 3PARTITION problem [5]. We design a

heuristic called the BalancedPools algorithm. As shown in

Algorithm 2, we iteratively partition the jobs into two pools

and then try to identify the adequate resource allocations

for each pool such that the makespans of these pools are

balanced. Within each pool we apply Johnson’s algorithm

for job scheduling, where map and reduce stage durations

are computed with the performance model described in



Algorithm 2 BalancedPools Algorithm

Input: 1) List J of n MapReduce jobs.
2) M : Number of machines in the cluster.

Output: Optimized Makespan

1: Sort J based on increasing number of map tasks
2: BestMakespan ←SIMULATE(J , JOHNSONORDER(J), M)
3: for split ← 1 to n− 1 do
4: // Partition J into list of small Jobsα and big Jobsβ
5: Jobsα ← (J1, · · · , Jsplit)
6: Jobsβ ← (Jsplit+1, · · · , Jn)
7: SizeBegin ← 1, SizeEnd ←M
8: // Binary search for the pool size that balances completion

times of both pools
9: repeat

10: SizeMid ← (SizeBegin + SizeEnd)/2
11: Makespanα ← SIMULATE(Jobsα,

JOHNSONORDER(Jobsα), SizeMid)
12: Makespanβ ← SIMULATE(Jobsβ ,

JOHNSONORDER(Jobsβ), M - SizeMid)
13: if Makespanα < Makespanβ then
14: SizeEnd ← SizeMid
15: else
16: SizeBegin ← SizeMid
17: end if
18: until SizeBegin 6= SizeEnd
19: Makespan ← MAX(Makespanα, Makespanβ)
20: if Makespan < BestMakespan then
21: BestMakespan ← Makespan
22: end if
23: end for

Section II. The pool makespan is estimated (accurately

within 5%) with MapReduce simulator SimMR [4] as a part

of the algorithm. The use of the simulator in the solution is

absolutely necessary and justified. As we demonstrated, the

makespan computation that follows Johnson’s schedule and

its simple abstraction may result in a significant inaccuracy,

and more accurate estimates might be obtained only via

MapReduce simulations at the task/slot level. The complex-

ity of the algorithm is O(n2 log n logM). However, SimMR

can simulate a 1000 job workload on a 100 node Hadoop

cluster in less than 2 seconds. The designed algorithm can

be extended to a larger number of pools at the price of a

significantly higher complexity.

The job execution with two pools is implemented using

Capacity scheduler [6] that allows resource partitioning into

different pools with a separate job queue for each pool.

IV. EVALUATION

This section evaluates the benefits of Johnson’s schedule

and the novel Balanced Pools algorithm for minimizing the

makespan of a set of MapReduce jobs using a variety of syn-

thetic and realistic workloads derived from the Yahoo! M45

cluster. First, we evaluate the benefits of different schedules

with simulation environment SimMR. Then, we validate the

simulation results by performing similar experiments in a

66-node Hadoop cluster.

A. Workloads

We use the following workloads in our experiments:

1) Yahoo! M45: This workload represents a mix of 100

MapReduce jobs 4 that is based on the analysis performed

on the Yahoo! M45 cluster [7], and is generated as follows:

• Each job consists of the number of map and reduce tasks

drawn from the distribution N (154, 558) and N (19, 145)
respectively, where N (µ, σ) is the normal distribution

with mean µ and standard deviation σ.
• Map and reduce task durations are defined by

N (50, 200) and N (100, 300) respectively5.
• To avoid that map and reduce stage durations of the jobs

look similar to each other (since they are drawn from the

same distribution), an additional scale factor is applied to

map and reduce task durations of each job.

To perform a sensitivity analysis, we have created two job

sets (100 jobs each) based on Yahoo! M45 workload:

1) Unimodal set that uses a single scale factor for the

overall workload, i.e., the scale factor for each job is

drawn uniformly from [1, 10].
2) Bimodal set where a subset of jobs (80%) are scaled

using a factor uniformly distributed between [1, 2] and
the remaining jobs (20%) are scaled using [8, 10]. This
mimics workloads that have a large fraction of short

jobs and a smaller subset of long jobs.

2) Synthetic: Additionally, we create a synthetic work-

load with 100 jobs having a number of map and reduce tasks

drawn uniformly from [1, 100] and [1, 50] respectively. The
map and reduce task durations are normally distributed using

N (100, 1000) andN (200, 2000) respectively. We create two

versions of synthetic workload: 1) Unimodal, where each job

is scaled using a factor uniformly distributed between [1, 10]
and 2) Bimodal, where 80% of the jobs are scaled using a

factor uniformly distributed between [1, 2] and the remaining

20% of jobs are scaled using [8, 10].

B. Simulation Results

First, we analyze the proposed job schedule algorithms

and their performance using the simulation environment

SimMR [4] that was designed for evaluation and analysis

of different workload management strategies in MapReduce

environments. SimMR can replay execution traces of real

workloads collected in Hadoop clusters as well as generate

and execute synthetic traces based on statistical properties

of workloads. Simulating synthetic workloads is especially

attractive since it enables a sensitivity analysis of scheduling

policies for a variety of different MapReduce workloads.

Figure 7 shows the results for the synthetic workloads

with Unimodal and Bimodal distributions. These graphs

reflect five lines: Min and Max show theoretical makespans

under Johnson’s (optimal) schedule and reverse Johnson’s

4We also run a mix with 10-20 jobs and obtained similar performance results.
5The study [7] did not report statistics of individual task durations. We use a greater

range for reduce tasks since they combine shuffle, sort, reduce phase processing, and
time for writing three data copies back to HDFS.
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Figure 7. Simulating synthetic workload: (a) Unimodal and (b) Bimodal.

(worst) schedule respectively. That is, if MapReduce jobs

would precisely satisfy the two-stage system assumptions

then the overall makespan can be easily computed from

the abstraction Ji=(mi, ri). A difference between Min and

Max reflects achievable performance benefits under the

optimal schedule for this abstraction. MinSim and MaxSim

show simulated makespans with SimMR for a set of given

MapReduce jobs under Johnson’s schedule and reverse John-

son’s schedule respectively. We should stress that once we

consider MapReduce jobs at the tasks/slots level Johnson’s

schedule and reverse Johnson’s schedule do not guarantee

the optimal and worst makespan for this set of jobs. The dif-

ference between MinSim and MaxSim reflects a lower bound

of potential benefits (since the “worst” makespan might be

much worse than under MaxSim). Finally, BalancedPools

reflects the simulated (with SimMR) makespan of the job

schedule constructed with the new BalancedPools heuristic.

The X axis reflects the Hadoop cluster size (without loss

of generality, we assume 1 map and 1 reduce slot per node).

The algorithm performance is a function of the cluster size:

with its increase (i.e., when available resources in the cluster

are plentiful), the performance benefits are diminishing as

expected. However, for different workloads the points of

diminishing return are different. This simulation exercise is

useful for evaluating the required cluster size to support the

specific (targeted) makespan for a set of given jobs.

Figure 7 shows that the simplified abstraction Ji=(mi, ri)
and makespan computations that use it (i.e., Min and Max)

are inaccurate for estimating the real makespan of MapRe-

duce jobs (due to lack of tasks/slots information), and in

the rest of the graphs we omit these lines. This comparison

strongly justifies the introduction of the simulator SimMR

in the new heuristic for accurate makespan estimates.
Figure 7(a) shows up to 25% of makespan decrease with

Jonhson’s schedule (MinSim) compared to MaxSim for Uni-

modal case. The benefits diminishing for larger cluster sizes.

The BalancedPools schedule behaves similar to Johnson’s

in this case. However, results are very different for the

Bimodal workload shown in Figure 7(b). The BalancedPools

heuristic provides up to 38% of makespan improvements,

which are much better compared to Johnson’s schedule (it

is suboptimal for this workload). BalancedPools achieves

signifficant additional makespan improvements compared to

Johnson’s algorithm for a variety of different cluster sizes.
Figure 8 shows results of simulating the Yahoo! M45

workload (Unimodal and Bimodal types). Interestingly,

Johnson’s schedule provides diminished returns in both cases

for Yahoo!’s workload. We can see only up to 12% of
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Figure 8. Simulating Yahoo!’s workload: (a) Unimodal and (b) Bimodal.

makespan improvements for most experiments. The Bal-

ancedPools heuristic significantly outperforms Johnson’s

algorithm: by 10%-30% in most cases. It shows overall

makespan improvements up to 38% for the Bimodal Yahoo!

M45 workload as shown in Figure 8(b).
Performance benefits under Johnson’s algorithm and the

BalancedPools heuristic are clearly workload and cluster

size dependent. The proposed framework automatically con-

structs the optimized job schedule and provides the estimates

of its makespan as a function of allocated resources. We

validate the simulation results through experiments on a

66-node Hadoop cluster. These results closely follow the

simulation results.



V. RELATED WORK

Scheduling of incoming jobs and the assignment of pro-

cessors to the scheduled jobs has been an important factor

for optimizing the performance of parallel and distributed

systems. It has been studied extensively in scheduling theory

(see a variety of papers and textbooks on the topic [8],

[9], [10], [11], [12], [13]). Designing an efficient distributed

server system often assumes choosing the “best” task as-

signment policy for a given model and user requirements.

However, the question of “best” job scheduling or task

assignment policy is still open for many models.

Job scheduling and workload management in MapReduce

environments is a new topic, but it has already received much

attention. Originally, Hadoop was designed for periodically

running large batch workloads with a FIFO scheduler. As

the number of users sharing the same MapReduce cluster

increased, a new Capacity scheduler [6] and Hadoop Fair

Scheduler (HFS) [14] were introduced to support more

efficient cluster sharing. There are a few research prototypes

of Hadoop schedulers that aim to optimize explicitly some

given scheduling metric, e.g. FLEX [15], ARIA [3], etc.

However, the existing schedulers do not provide a support

for minimizing the completion time for a set of jobs.

CoScan [1] offers a special scheduling framework that

merges the execution of Pig programs with common data

inputs in such a way that this data is only scanned once.

It augments Pig programs with a set of (deadline, reward)

options to achieve. It then formulates the schedule as an

optimization problem and offer a heuristic solution. While

this approach aims to optimize the execution times of a set

of Pig programs, their problem is quite different from the

problem of minimizing the makespan of a set of independent

jobs considered in our paper.

Starfish project [16] applies dynamic instrumentation to

collect a detailed run-time monitoring information about

job execution that enables the analysis and prediction of

job execution under different configuration parameters. It

offers a workflow-aware scheduler that correlate data (block)

placement with task scheduling to optimize the workflow

completion time. In our work, we propose complementary

optimizations based on optimal scheduling of independent

jobs to minimize the overall completion time.

Moseley et al. [17] is the closest work to ours. It formal-

izes MapReduce scheduling as a generalized version of the

classical two-stage flexible flow-shop problem with identical

machines. They provide a 12-approximate algorithm for the

offline problem of minimizing the total flowtime, which is

the sum of the time between the arrival and the completion

of each job. In our work, we pursue a different performance

objective and propose heuristics for minimizing the maxi-

mum completion time for a set of jobs.

VI. CONCLUSION

In this work, we considered the problem of finding a

schedule that minimizes the overall completion time of a

given set of independent MapReduce jobs. We designed

a novel framework and a new heuristic, called Balanced-

Pools, that efficiently utilize characteristics and properties

of MapReduce jobs in a given workload for constructing

the optimized job schedule. Currently, we are evaluating this

heuristic with a variety of different MapReduce workloads to

measure achievable performance gains. Data analysis tasks

are often specified with higher-level SQL-type abstractions

like Pig and Hive, that may result in MapReduce jobs with

dependencies. The next step is to address a more general

problem of minimizing the makespan of batch workloads

that additionally include workflows of MapReduce jobs.
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