
Resource Provisioning Framework for MapReduce Jobs

with Performance Goals

Abhishek Verma1, Ludmila Cherkasova2, and Roy H. Campbell1

1 University of Illinois at Urbana-Champaign, {verma7,rhc}@illinois.edu
2 HP Labs, Palo Alto, {lucy.cherkasova}@hp.com

Abstract. Many companies are increasingly using MapReduce for efficient large

scale data processing such as personalized advertising, spam detection, and differ-

ent data mining tasks. Cloud computing offers an attractive option for businesses

to rent a suitable size Hadoop cluster, consume resources as a service, and pay

only for resources that were utilized. One of the open questions in such envi-

ronments is the amount of resources that a user should lease from the service

provider. Often, a user targets specific performance goals and the application

needs to complete data processing by a certain time deadline. However, currently,

the task of estimating required resources to meet application performance goals

is the solely user’s responsibility. In this work, we introduce a novel framework

and technique to address this problem and to offer a new resource sizing and

provisioning service in MapReduce environments. For a MapReduce job that

needs to complete within a certain time, we build the job profile by using its past

executions or by executing it on a smaller data set. Then, by applying scaling rules

combined with a fast and efficient capacity planning model, a set of resource pro-

visioning options is generated. Moreover, we design a model for estimating the

impact of node failures on a job completion time to evaluate worst case scenarios.

We validate the accuracy of our models using a set of realistic applications. The

predicted completion times of generated resource provisioning options are within

10% of the measured times in our 66-node Hadoop cluster.

1 Introduction

Private and public clouds offer a new delivery model with virtually unlimited computing

and storage resources. Many companies are following the new trend of using MapRe-

duce [1] and its open-source implementation Hadoop for large-scale, data intensive

processing and for mining petabytes of unstructured information. However, setting up a

dedicated Hadoop cluster requires a significant capital expenditure that can be difficult

to justify. Cloud computing offers a compelling alternative and allows users to rent re-

sources in a “pay-as-you-go” fashion. A list of supported services by Amazon (Amazon

Web Services) includes MapReduce environments for rent. It is an attractive and cost-

efficient option for many users because acquiring and maintaining complex, large-scale

infrastructures is a difficult and expensive decision. Hence, a typical practice among

MapReduce users is to develop their applications in-house using a small development

testbed and test it over a small input dataset. They can lease a MapReduce cluster from

the service provider and subsequently execute their MapReduce applications on large

input datasets of interest. Often, the application is a part of a more elaborate business

pipeline, and the MapReduce job has to produce results by a certain time deadline,

i.e., it has to achieve certain performance goals and service level objectives (SLOs).

Thus, a typical performance question in MapReduce environments is “how to estimate

the required resources (number of map and reduce slots) for a job so that it achieves

certain performance goals and completes data processing by a given time?” Currently,

there is no available methodology to easily answer this question, and businesses are

left on their own to struggle with the resource sizing problem: they need to perform

adequate application testing, performance evaluation, capacity planning estimation, and

then request appropriate amount of resources from the service provider.

In this work, we propose a novel framework to solve this problem and offer a new re-

source sizing and provisioning service in MapReduce environments. For a MapReduce

job that needs to complete within a certain time, its job profile can be built from its past

executions. Alternatively, profiling can done by executing a given application with a

smaller input dataset than the original one. The power of the designed technique is that

it offers a compact job profile that is comprised of performance invariants which are

independent of the amount of resources assigned to the job (i.e., the size of the Hadoop

cluster) and the size of the input dataset. The job profile accurately reflects the applica-

tion performance characteristics during all phases of a given job: map, shuffle/sort, and

reduce phases. For many applications, increasing input dataset while keeping the same

number of reduce tasks leads to an increased amount of data shuffled and processed per

reduce task. Using linear regression, we derive scaling factors for shuffle and reduce

phases to estimate their service times as a function of input data.

We design a MapReduce performance model that predicts the job completion time

based on the job profile, input dataset size, and allocated resources. We enhance the

designed model to evaluate the performance impact of failures on job completion time.

This model helps in evaluating worst case scenarios and deciding on the necessity of

additional resources or program changes as a means of coping with potential failure

scenarios. Finally, we propose a fast and efficient capacity planning procedure for esti-

mating the required resources to meet a given application SLO. The output of the model

is a set of plausible solutions (if such solutions exist for a given SLO) with a choice

of different numbers of map and reduce slots that need to be allocated for achieving

performance goals of this application.

We validate the accuracy of our approach and performance models using a set of

realistic applications. First, we build the application profiles in a small staging testbed

while using small input datasets for processing. Then we perform capacity planning

and generate plausible resource provisioning options for achieving a given application

SLO. The predicted completion times of these generated options are within 10% of the

measured times in the 66-node Hadoop cluster.

This paper is organized as follows. Section 2 provides a background on MapRe-

duce. Section 3 introduces our approach towards profiling MapReduce jobs. Section 4

presents a variety of MapReduce performance models and the SLO-based resource

provisioning. The efficiency of our approach and the accuracy of designed models is

evaluated in Section 5. Section 6 describes the related work. Section 7 summarizes the

paper and outlines future directions.

2 MapReduce Background

This section provides an overview of the MapReduce [1] abstraction, execution, schedul-

ing, and failure modes. In the MapReduce model, computation is expressed as two

functions: map and reduce. The map function takes an input pair and produces a list of

intermediate key/value pairs. The intermediate values associated with the same key k2

are grouped together and then passed to the reduce function. The reduce function takes

intermediate key k2 with a list of values and processes them to form a new list of values.

map(k1, v1) → list(k2, v2)

reduce(k2, list(v2)) → list(v3)

MapReduce jobs are distributed and executed across multiple machines: the map stage

is partitioned into map tasks and the reduce stage is partitioned into reduce tasks.

Each map task processes a logical split of input data that generally resides on a

distributed file system. The map task reads the data, applies the user-defined map func-

tion on each record, and buffers the resulting output. This data is sorted and partitioned

for different reduce tasks, and written to the local disk of the machine executing the

map task. The reduce stage consists of three phases: shuffle, sort and reduce phase. In

the shuffle phase, the reduce tasks fetch the intermediate data files from the already

completed map tasks, thus following the “pull” model. In the sort phase, the interme-

diate files from all the map tasks are sorted. An external merge sort is used in case the

intermediate data does not fit in memory as follows: the intermediate data is shuffled,

merged in memory, and written to disk. After all the intermediate data is shuffled, a

final pass is made to merge all these sorted files. Thus, the shuffle and sort phases are

interleaved. Finally, in the reduce phase, the sorted intermediate data is passed to the

user-defined reduce function. The output from the reduce function is generally written

back to the distributed file system.

Job scheduling in Hadoop is performed by a master node, which manages a number

of worker nodes in the cluster. Each worker has a fixed number of map slots and reduce

slots, which can run tasks. The number of map and reduce slots is statically configured

(typically, one or two per core or disk). The slaves periodically send heartbeats to the

master to report the number of free slots and the progress of tasks that they are currently

running. Based on the availability of free slots and the scheduling policy, the master

assigns map and reduce tasks to slots in the cluster.

In the real world, user code is buggy, processes crash, and machines fail. MapRe-

duce is designed to scale to a large number of machines and to yield a graceful perfor-

mance degradation in case of failures. There are three types of failures that can occur.

First, a map or reduce task can fail because of buggy code or runtime exceptions. The

worker node running the failed task detects task failures and notifies the master. The

master reschedules the execution of the failed task, preferably on a different machine.

Secondly, a worker can fail, e.g., because of OS crash, faulty hard disk, or network

interface failure. The master notices a worker that has not sent any heartbeats for a

specified time interval and removes it from its worker pool for scheduling new tasks.

Any tasks in progress on the failed worker are rescheduled for execution. The master

also reschedules all the completed map tasks on the failed worker that belong to running

jobs, since the intermediate data of these maps may not be accessible to reduce tasks of

these jobs. Finally, the failure of the master is the most serious failure mode. Currently,

Hadoop has no mechanism for dealing with the failure of the job master. This failure

is rare and can be avoided by running multiple masters and using a Paxos consensus

protocol to decide the primary master.

3 Profiling MapReduce Jobs

In this section, we discuss different executions of the same MapReduce job in the

Hadoop cluster as a function of job’s map and reduce tasks and the allocated map and

reduce slots for executing the job. Our goal is to extract a single job profile that uniquely

captures critical performance characteristics of the job execution in different stages.

3.1 Job Execution as a Function of Allocated Resources

Let us consider two popular MapReduce applications (described below) and demon-

strate the differences between their job executions and job completion times as a func-

tion of the amount of resources allocated to these jobs.

– The first application is the Sort benchmark [2], which involves the use of identity

map/reduce function: The output of the map and reduce task is the same as its input.

Thus, the entire input of map tasks is shuffled to reduce tasks and then written as

output.
– The second application is WikiTrends application that processes Wikipedia article

traffic logs that were collected (and compressed) every hour. WikiTrends counts the

number of times each article has been visited in the given input dataset, i.e. access

frequency or popularity count of each Wikipedia article over time.

First, we run the Sort benchmark with 8GB input on 64 machines each configured with

a single map and a single reduce slot, i.e., with 64 map and 64 reduce slots overall.

Figure 1 shows the progress of the map and reduce tasks over time (on the x-axis) vs the

64 map slots and 64 reduce slots (on the y-axis). Since we use blocksize of 128MB, we

have 8GB/128MB = 64 input splits. As each split is processed by a different map task,

the job consists of 64 map tasks. This job execution results in a single map and reduce

wave. We split each reduce task into its constituent shuffle, sort and reduce phases. As

seen in the figure, since the shuffle phase starts immediately after the first map task is

completed, the shuffle phase overlaps with the map stage.

Next, we run the Sort benchmark with the same 8GB input dataset on the same

testbed, except this time, we provide it with fewer resources: 16 map slots and 22 reduce

slots. As shown in Figure 3, since the number of map tasks is greater than the number of

provided map slots, the map stage proceeds in multiple rounds of slot assignment, viz. 4

waves (⌈64/16⌉)3. These waves are not synchronized with each other, and the scheduler

assigns the task to the slot with the earliest finishing time. Similarly, the reduce stage

proceeds in 3 waves (⌈64/22⌉). In Fig. 1- 4, we show the sort phase duration that is

complementary to the shuffle phase.

While the executions of four map waves resemble each other, note the difference

between the first reduce wave and the following two reduce waves in this job execution.

As we mentioned earlier, the shuffle phase of the first reduce wave starts immediately

after the first map task completes. Moreover, this first shuffle phase continues until all

the map tasks are complete, and their intermediate data is copied to the active reduce

tasks. Thus the first shuffle phase overlaps with the entire map stage. The sort phase

of the reduce tasks occurs in parallel with the shuffle but can complete only after their

shuffle phase is completed. Finally, after the sort phase is done, the reduce computation

can be performed. After that, the released reduce slots become available to the next

3
Note, that for multiple map and reduce waves, there is an extra overhead for starting map and reduce tasks. In our ongoing
work, we design a set of micro-benchmarks to automatically assess these overheads in different MapReduce environments
for incorporating them in the performance model.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

T
a

s
k
 s

lo
ts

Time (in seconds)

Map Shuffle Sort Reduce

Fig. 1. Sorting with 64 map and 64 reduce slots.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

T
a
s
k
 s

lo
ts

Time (in seconds)

Map (first wave)
Map (second wave)

Shuffle
Sort

Reduce

Fig. 2. WikiTrends with 64 map and 64 reduce

slots.

 0

 20

 40

 0 20 40 60 80 100 120

T
a
s
k
 s

lo
ts

Time (in seconds)

Map (first wave)
Map (second wave)

Map (third wave)
Map (fourth wave)

Map (fifth wave)
Shuffle

Sort
Reduce

Fig. 3. Sorting with 16 map and 22 reduce slots

 0

 20

 40

 0 100 200 300 400 500 600

T
a
s
k
 s

lo
ts

Time (in seconds)

Map (first wave)
Map (second wave)

Map (third wave)
Map (fourth wave)

Map (fifth wave)
Shuffle

Sort
Reduce

Fig. 4. WikiTrends with 16 map and 16 reduce slots.

reduce tasks. As shown in Figure 3, there is a drastic difference between the execution

of the first reduce wave, but the executions of the remaining reduce waves bear a strong

resemblance to each other.

Figures 2 and 4 present our second example with WikiTrends application. In this

example, we process a subset of logs collected during a few days in August, 2010.

There are 71 files in the set that correspond to 71 map tasks and 64 reduce tasks in this

application. First, we execute WikiTrends with 64 map and 64 reduce slots. The job

execution consists of two map waves (⌈71/64⌉) and a single reduce wave as shown in

Figure 2. The second map wave processes only 7 map tasks. However, the shuffle phase

of the reduce stage can be completed only when all the map tasks are done, and overlaps

with both preceding map waves. Figure 4 shows the WikiTrends execution with 16 map

and 16 reduce slots. The job execution has 5 map and 4 reduce waves. Again, we can see

a striking difference between the first reduce wave and the remaining 3 reduce waves

(which resemble each other).

As observed from Figures 1- 4, it is difficult to predict the completion time of the

same job when different amount of resources are given to the job. Traditionally, a simple

rule of thumb states [3], that if T is a completion time of a MapReduce job with X map

and Y reduce slots then by using a smaller Hadoop cluster with X/2 map and Y/2
reduce slots the same job will be processed twice as slow, i.e., in 2 ·T . While it is clear,

that the job execution time is a function of allocated resources, the scaling rules are

more complex, and the simple example with WikiTrends shows this. The completion

time of WikiTrends in 64x64 configuration is approx. 200 sec. However, the completion

time of WikiTrends in 16x16 configuration (4 times smaller cluster) is approx. 570 sec,

which is far less than 4 times (naively expected) completion time increase. Apparently,

more elaborate modeling and job profiling techniques are needed to capture the unique

characteristics of MapReduce applications and to predict their completion time.

3.2 Job Performance Invariants as a Job Profile

Our goal is to create a compact job profile comprising of performance invariants that are

independent of the amount of resources assigned to the job over time and that reflects

all phases of a given job: map, shuffle/sort, and reduce phases. Metrics and timing of

different phases, that we use below, can be obtained from the counters at the job master

during the job’s execution or parsed from the logs.

Map Stage: The map stage consists of a number of map tasks. To compactly char-

acterize the distribution of the map task durations and other invariant properties, we

extract the following metrics:

(Mmin,Mavg,Mmax, AvgSizeinput
M , SelectivityM),where

– Mmin – the minimum map task duration. Since the shuffle phase starts when the

first map task completes, we use Mmin as an estimate for the beginning of the

shuffle phase.
– Mavg – the average duration of map tasks to summarize the duration of a map wave.
– Mmax – the maximum duration of the map tasks. 4 Since the shuffle phase can

finish only when the entire map stage completes, i.e. all the map tasks complete,

Mmax is an estimate for a worst map wave completion time.
– AvgSizeinput

M - the average amount of input data for the map task. We use it to

estimate the number of map tasks to be spawned for processing a new dataset.
– SelectivityM – the ratio of the map output size to the map input size. It is used to

estimate the amount of intermediate data produced by the map stage as input to the

reduce stage.

Reduce Stage: As described earlier, the reduce stage consists of the shuffle/sort and

reduce phases. The shuffle phase begins only after the first map task has completed. The

shuffle phase (of any reduce wave) completes when the entire map stage is complete

and all the intermediate data generated by the map tasks has been shuffled to the reduce

tasks and has been sorted. Since the shuffle and sort phases are interleaved, we do not

consider the sort phase separately and include it in the shuffle phase. After shuffle/sort

completes, the reduce phase is performed. Thus the profiles of shuffle and reduce phases

are represented by the average and maximum of their tasks durations. In addition, for

the reduce phase, we compute the reduce selectivity, denoted as SelectivityR, which is

defined as the ratio of the reduce output size to its input.

The shuffle phase of the first reduce wave may be significantly different from the

shuffle phase that belongs to the next reduce waves (illustrated in Figure 3, 4). This

happens because the shuffle phase of the first reduce wave overlaps with the entire map

stage and depends on the number of map waves and their durations. Therefore, we

collect two sets of measurements: (Sh1

avg, Sh1

max) for shuffle phase of the first reduce

wave (called, first shuffle) and (Shtyp
avg, Shtyp

max) for shuffle phase of the other waves

(called, typical shuffle). Since we are looking for the performance invariants that are

4
To avoid the outliers and to improve the robustness of the measured maximum durations one can use instead the mean of
a few top values.

independent of the amount of allocated resources to the job, we characterize a shuffle

phase of the first reduce wave in a special way and include only the non-overlapping

portions of the first shuffle in (Sh1
avg and Sh1

max). Thus the job profile in the shuffle

phase is characterized by two pairs of measurements: (Sh1

avg, Sh1

max, Shtyp
avg, Shtyp

max).

The reduce phase begins only after the shuffle phase is complete. The profile of the

reduce phase is represented by the average and maximum of the reduce tasks durations

and the reduce selectivity, denoted as SelectivityR, which is defined as the ratio of the

reduce output size to its input: (Ravg, Rmax, SelectivityR).

4 MapReduce Performance Model

In this section, we design a MapReduce performance model that is based on i) the job

profile and ii) the performance bounds of completion time of different job phases. This

model can be used for predicting the job completion time as a function of the input

dataset size and allocated resources.

4.1 General Theoretical Bounds

First, we establish the performance bounds for a makespan (completion time) of a given

set of n tasks that is processed by k servers (or by k slots in MapReduce environments).

Let T1, T2, . . . , Tn be the duration of n tasks of a given job. Let k be the number

of slots that can each execute one task at a time. The assignment of tasks to slots is

done using a simple, online, greedy algorithm, i.e., assign each task to the slot with the

earliest finishing time.

Let avg = (
∑n

i=1 Ti)/n and max = maxi {Ti} be the average and maximum

duration of the n tasks respectively.

Makespan Theorem: The makespan of the greedy task assignment is at least n· avg /k
and at most (n − 1) · avg/k + max.

The lower bound is trivial, as the best case is when all n tasks are equally distributed

among the k slots (or the overall amount of work n ·avg is processed as fast as possible

by k slots). Thus, the overall makespan is at least n · avg/k.

For the upper bound, let us consider the worst case scenario, i.e., the longest task

T̂ ∈ {T1, T2, . . . , Tn} with duration max is the last processed task. In this case, the time

elapsed before the final task T̂ is scheduled is at most the following: (
∑n−1

i=1 Ti)/k ≤
(n − 1) · avg/k. Thus, the makespan of the overall assignment is at most (n − 1) ·
avg/k + max. 5

¥

These bounds are particularly useful when max ≪ n·avg/k, i.e., when the duration

of the longest task is small as compared to the total makespan. The difference between

lower and upper bounds represents the range of possible job completion times due to

non-determinism and scheduling.

4.2 Bounds-based Completion Time Estimates of a MapReduce Job

Let us consider job J with a given profile either built from executing this job in a

staging environment or extracted from past job executions. Let J be executed with a

new dataset that is partitioned into NJ
M map tasks and NJ

R reduce tasks. Let SJ
M and

SJ
R be the number of map and reduce slots allocated to job J respectively.

5
Similar ideas were explored in the classic papers on scheduling, e.g., to characterize makespan bounds in [4].

Let Mavg and Mmax be the average and maximum durations of map tasks (defined

by the job J profile). Then, by Makespan Theorem, the lower and upper bounds on the

duration of the entire map stage (denoted as T low
M and T

up
M respectively) are estimated

as follows:

T low
M = NJ

M · Mavg/SJ
M (1)

Tup
M = (NJ

M − 1) · Mavg/SJ
M + Mmax (2)

The reduce stage consists of shuffle (which includes the interleaved sort phase) and

reduce phases. Similarly, Makespan Theorem can be directly applied to compute the

lower and upper bounds of completion times for reduce phase (T low
R , T

up
R) since we

have measurements for average and maximum task durations in the reduce phase, the

numbers of reduce tasks NJ
R and allocated reduce slots SJ

R. 6

The subtlety lies in estimating the duration of the shuffle phase. We distinguish the

non-overlapping portion of the first shuffle and the task durations in the typical shuffle

(see Section 3 for definitions). The portion of the typical shuffle phase in the remaining

reduce waves is computed as follows:

T low
Sh =

(

NJ
R

SJ
R

− 1

)

· Shtyp
avg (3)

Tup
Sh =

(

NJ
R − 1

SJ
R

− 1

)

· Shtyp
avg + Shtyp

max (4)

Finally, we can put together the formulae for the lower and upper bounds of the overall

completion time of job J :

T low
J = T low

M + Sh1
avg + T low

Sh + T low
R (5)

Tup
J = Tup

M + Sh1
max + Tup

Sh + Tup
R (6)

Note that we can re-write Eq. 5 for T low
J by replacing its parts with more detailed Eq. 1

and Eq. 3 and similar equations for sort and reduce phases as it is shown below:

T low
J =

NJ
M ·Mavg

SJ
M

+
NJ

R·(Shtyp
avg+Ravg)

SJ
R

+ Sh1

avg−Shtyp
avg (7)

This presentation allows us to express the estimates for completion time in a simplified

form shown below:

T low
J = Alow

J ·
NJ

M

SJ
M

+ Blow
J ·

NJ
R

SJ
R

+ Clow
J , (8)

where Alow
J = Mavg, Blow

J = (Shtyp
avg + Ravg), and Clow

J = Sh1

avg − Shtyp
avg . Eq. 8 pro-

vides an explicit expression of a job completion time as a function of map and reduce

slots allocated to job J for processing its map and reduce tasks, i.e., as a function of

(NJ
M , NJ

R) and (SJ
M , SJ

R). The equation for Tup
J can be written similarly.

6
For simplicity of explanation, we omit the normalization step of measured durations in job profile with respect to

AvgSize
input

M
and SelectivityM . We will discuss it next in Section 4.3.

4.3 Scaling Factors

In the previous section, we showed how to extract the job profile and use it for predicting

job completion time when different amounts of resources are used. When the job is

executed on a larger dataset the number of map tasks and reduce tasks may be scaled

proportionally if the application structure allows it. In some cases, the number of reduce

tasks is statically defined, e.g., 24 hours a day, or the number of categories (topics) in

Wikipedia, etc. When the job is executed on a larger dataset while the number of reduce

tasks is kept constant, the durations of the reduce tasks naturally increase as the size of

the intermediate data processed by each reduce task increases. The duration of the map

tasks is not impacted because this larger dataset is split into a larger number of map

tasks but each map task processes a similar portion of data. The natural attempt might

be to derive a single scaling factor for reduce task duration as a function of the amount

of processed data, and then use it for the shuffle and reduce phase duration scaling as

well. However, this might lead to inaccurate results. The reason is that the shuffle phase

performs data transfer and its duration is mainly defined by the network performance.

The reduce phase duration is defined by the application specific computation of the

user supplied reduce function and significantly depends on the disk write performance.

Thus, the duration scaling in these phases might be different. Consequently, we derive

two scaling factors for shuffle and reduce phases separately, each one as a function of

the processed dataset size.

Therefore in the staging environment, we perform a set of k experiments (i =
1, 2, ..., k) with a given MapReduce job for processing different size input datasets

(while keeping the number of reduce tasks constant), and collect the job profile mea-

surements. We derive scaling factors with linear regression in the following way. Let

Di be the amount of intermediate data for processing per reduce task, and let Shtyp
i,avg

and Ri,avg be the job profile measurements for shuffle and reduce phases respectively.

Then, using linear regression, we solve the following sets of equations:

CSh
0 + CSh

1 · Di = Shtyp
i,avg, (i = 1, 2, · · · , k) (9)

CR
0 + CR

1 · Di = Ri,avg, (i = 1, 2, · · · , k) (10)

Derived scaling factors (CSh
0 , CSh

1) for shuffle phase and (CR
0 , CR

1) for reduce

phase are incorporated in the job profile. When job J processes an input dataset that

leads to a different amount of intermediate data Dnew per reduce task, its profile is

updated as Shtyp
avg = CSh

0 +CSh
1 ·Dnew and Ravg = CR

0 +CR
1 ·Dnew. Similar scaling

factors can be derived for maximum durations Shtyp
max and Rmax as well as for the first

shuffle phase measurements.

4.4 Impact of Failures on the Completion Time Bounds

The performance implications of failures depend on the type of failures (discussed in

Section 2). For example, disk failures are typical, but their performance implications

for running MapReduce jobs are very mild. It is because by default, each piece of data

is replicated three times, and data that resides on a failed disk can be fetched from other

locations. Moreover, for each data block with a number of copies less than the default

replication level, Hadoop will reconstruct the additional copies.

Worker failure is another typical type of failure, and its performance implications for

a MapReduce job can be more serious. If the failure happens while the job was running,

and the failed worker has either completed or in-progress job map tasks then all these

map tasks need to be recomputed, since the intermediate data of these tasks might be

unavailable to current or future reduce tasks. The same applies to the reduce tasks which

were in progress on the failed worker: they need to be restarted on a different node.

Moreover, in order to understand the performance impact of a worker failure on

job completion time, we need to consider not only when the failure happened, but also

whether additional resources in the system can be allocated to the job to compensate

for the failed worker. For example, if a worker failure happens in the very beginning

of the map stage and the resources of the failed worker are immediately replenished

with additional ones, then the lower and upper bounds of job completion time remain

practically the same. However, if the failed worker resources are not replenished then

the performance bounds are higher.

On the other hand, if a worker failure happens during the job’s last wave of reduce

tasks then all the completed map tasks that reside on the failed node as well as the

reduce tasks that were in-progress on this node have to be re-executed, and even if the

resources of the failed node are immediately replenished there are serious performance

implications of this failure so late during the job execution. The latency for recomputing

the map and reduce tasks of the failed node can not be hidden: this computation time

is explicitly on the critical path of the job execution and is equivalent of adding entire

map and reduce stage latency: Mmax + Shtyp
max + Rmax.

Given the time of failure tf , we try to quantify the job completion time bounds. Let

us consider job J with a given profile, which is partitioned into NJ
M map tasks and NJ

R

reduce tasks. Let the worker failure happen at some point of time tf . There are two

possibilities for the job J execution status at the time of failure, it is either in the map or

the reduce stage. We can predict whether the failure happened during the map or reduce

stage based on either using low or upper bounds of a completion time (or its average).

Let us consider the computation based on the lower bound. We now describe how to

approximate the number of map and reduce tasks yet to be completed in both the cases.

– Case (1): Let us assume that the job execution is in the map stage at time tf , i.e.,

tf ≤ T low
M . In order to determine the number of map tasks yet to be processed,

we approximate the number of completed (NJ
Mdone

) and failed (NJ
Mfail

) tasks as

follows:

NJ
Mdone

· Mavg/SJ
M = tf =⇒ NJ

Mdone
= ⌊tf · SJ

M/Mavg⌋

If there are W worker nodes in the Hadoop cluster for job J processing and one
of them fails, then

NJ
Mfail

= ⌊NJ
Mdone

/W ⌋

Thus, the number of map and reduce tasks yet to be processed at time tf (denoted

as NJ
M,tf

and NJ
R,tf

) are determined as follows:

NJ
M,tf

= NJ
M − NJ

Mdone
+ NJ

Mfail
and NJ

R,tf
= NJ

R

– Case (2): Let us now assume that the map stage is complete, and the job execution is

in the reduce stage at time tf , tf ≥ T low
M and all the map tasks NJ

M are completed.

The number of completed reduce tasks NJ
Rdone

at time tf can be evaluated using

Eq. 8:

Blow
J ·

NJ
Rdone

SJ
R

= tf − Clow
J − Alow

J ·
NJ

M

SJ
M

Then the number of failed map and reduce tasks can be approximated as:

NJ
Mfail

= ⌊NJ
M/W ⌋ and NJ

Rfail
= ⌊NJ

Rdone
/W ⌋

The remaining map and reduce tasks of job J yet to be processed at time tf are

determined as follows:

NJ
M,tf

= NJ
Mfail

and NJ
R,tf

= NJ
R − NJ

Rdone
+ NJ

Rfail

Let SJ
M,tf

and SJ
R,tf

be the number of map and reduce slots allocated to job J after the

node failure. If the failed resources are not replenished, then the number of map and

reduce slots is correspondingly decreased. The number of map and reduce tasks yet to

be processed are NJ
M,tf

and NJ
R,tf

as shown above. Then the performance bounds on

the processing time of these tasks can be computed using Eq. 5 and Eq. 6 introduced

in Section 4.2. The worker failure is detected only after time δ depending on the value

of the heart beat interval. Hence, the time bounds are also increased by the additional

time delay δ.

4.5 SLO-based Resource Provisioning

When users plan the execution of their MapReduce applications, they often have some

service level objectives (SLOs) that the job should complete within time T . In order

to support the job SLOs, we need to be able to answer a complementary performance

question: given a MapReduce job J with input dataset D, how many map and reduce

slots need to be allocated to this job so that it finishes within T ?

We observe a monotonicity property for MapReduce environments. Clearly, by al-

locating a higher number of map and reduce slots to a job, one can only decrease the

job completion time. In the light of this monotonicity property, we reformulate the

problem as follows. Given a MapReduce job J with input dataset D identify minimal

combinations (SJ
M , SJ

R) of map and reduce slots that can be allocated to job J so that it

finishes within time T ? We consider three design choices for answering this question:

1) T is targeted as a lower bound of the job completion time. Typically, this leads

to the least amount of resources allocated to the job for finishing within deadline T .

The lower bound corresponds to an ideal computation under allocated resources and is

rarely achievable in real environments.

2) T is targeted as an upper bound of the job completion time. Typically, this leads

to a more aggressive resource allocations and might lead to a job completion time that is

much smaller than T because worst case scenarios are also rare in production settings.

3) Given time T is targeted as the average between lower and upper bounds on job

completion time. This more balanced resource allocation might provide a solution that

enables the job to complete within time T .

Algorithm 1 finds the minimal combinations of map/reduce slots (SJ
M , SJ

R) for one

of design choices above, e.g., when T is targeted as a lower bound of the job completion

time. The algorithm sweeps through the entire range of map slot allocations and finds

the corresponding values of reduce slots that are needed to complete the job within

time T using a variation of Eq. 8 introduced in Section 4.2. The other cases when T is

targeted as the upper bound and the average bound are handled similarly.

Algorithm 1 Resource Allocation Algorithm

Input:

Job profile of J

(NJ
M , NJ

R) ← Number of map and reduce tasks of J

(SM , SR) ← Total number of map and reduce slots in the cluster

T ← Deadline by which job must be completed

Output: P ← Set of plausible resouce allocations (SJ
M , SJ

R)

for SJ
M ← MIN(NJ

M , SM) to 1 do

Solve the equation
Alow

J

SJ
M

+
Blow

J

SJ
R

= T − Clow
J for SJ

R

if 0 < SJ
R ≤ SR then

P ← P ∪ (SJ
M , SJ

R)
else

// Job cannot be completed within deadline T

// with the allocated map slots

Break out of the loop

end if

end for

5 Evaluation

We perform our experiments on 66 HP DL145 GL3 machines. Each machine has four

AMD 2.39MHz cores, 8 GB RAM and two 160GB hard disks (7200rpm SATA), but

only one disk is used for Hadoop data. The machines are set up in two racks. The

1Gb network interfaces of the machines in the same rack are connected to a Gigabit

Procurve 2650 switch. The racks are interconnected using a ProCurve 2900 switch. We

use Hadoop 0.20.2 with two machines as job master and the DFS master. The remaining

64 machines are used as worker nodes, each configured with a single map and reduce

slot (since data disk is a bottleneck). The blocksize of the file system is set to 64MB

and the replication level is set to 3. We disabled speculation in all our experiments as it

did not lead to any significant improvements.

In order to validate our model, we use four representative MapReduce applications:

1. Grep: This application processes 27GB of Wikipedia article text and counts the fre-

quency of URLs in the entire corpus. Each map task searches for a string matching

“http://[a-zA-Z0-9./-]+” and the reduce task counts the frequency of each URL.

2. Sort: The Sort application sorts 64GB of random data generated using random text

writer in GridMix27. It uses identity map and reduce tasks, since the framework

performs the actual sorting.

3. WikiTrends: We use the data from Trending Topics (TT)8: Wikipedia article traffic

logs that were collected (and compressed) every hour in the months of April to

7
http://hadoop.apache.org/mapreduce/docs/current/gridmix.html

8
http://trendingtopics.org

August 2010. Our MapReduce application counts the number of times each article

has been visited according to the given input dataset, which is very similar to the

job that is run periodically by TT.
4. WordCount: It counts the word frequencies in 27 GB of Wikipedia article text

corpus. The map task tokenizes each line into words, while the reduce task counts

the occurrence of each word.

5.1 Performance Invariants

In our first set of experiments, we aim to validate whether the metrics, that we chose for

the inclusion in the job profile, indeed represent performance invariants across different

executions of the job on the same input dataset. To this end, we execute our MapReduce

jobs on the same datasets and the same Hadoop cluster but with a variable number

of map and reduce slots: i) 64 map and 32 reduce slots, ii) 16 map and 16 reduce

slots. The collected job profile metrics are summarized in Table 1. We observe that the

average duration metrics are within 5% of each other. The maximum durations show

slightly higher variance. Each experiment is performed 10 times, and again, collected

metrics exhibit less than 5% variation. From these measurements, we conclude that job

profile indeed accurately captures application behavior characteristics and reflect the

job performance invariants.

Job
Map Reduce Map Task duration (s) Map 1st Shuffle (s) Typ. Shuffle (s) Reduce (s) Reduce
slots slots Min Avg Max Selectivity Avg Max Avg Max Avg Max Selectivity

Twitter
64 32 26 30 42 3.24 8 11 37 40 22 44 3.2 · 10−8

16 16 26 29 43 3.24 7 10 37 41 21 41 3.2 · 10−8

Sort
64 32 2 5 16 1.00 7 13 30 50 53 75 1.00
16 16 2 4 14 1.00 8 11 30 51 44 73 1.00

WordCount
64 32 5 34 40 1.31 8 11 24 30 11 14 0.46
16 16 5 34 41 1.31 7 10 23 28 10 14 0.46

WikiTrends
64 32 66 99 120 9.98 13 27 115 142 26 34 0.37
16 16 65 98 121 9.98 15 27 113 144 26 32 0.37

Table 1. Job profiles of the four MapReduce applications.

5.2 Scaling Factors

We execute WikiTrends and WordCount applications on gradually increasing datasets

with a fixed number of reduce tasks for each application. Our intent is to measure the

trend of the shuffle and reduce phase durations (average and maximum) and validate

the linear regression approach proposed in Section 4.3. The following table gives the

details of the experiments and the resulting co-efficients of linear regression, i.e., scaling

factors of shuffle and reduce phase durations derived for these applications.

Parameters WikiTrends WordCount

Size of input dataset 4.3GB to 70GB 4.3GB to 43GB

Number of map tasks 70 to 1120 70 to 700

Number of reduce tasks 64 64

Number of map, reduce slots 64, 32 64, 32

CSh
0,avg, CSh

1,avg 16.08, 2.44 6.92, 0.66

CSh
0,max, CSh

1,max 10.75, 2.29 11.28, 0.71

CR
0,avg, CR

1,avg 11.45, 0.56 4.09, 0.22

CR
0,max, CR

1,max 7.96, 0.43 7.26, 0.24

Figure 5 shows that the trends are indeed linear for WikiTrends and WordCount.

Note that the lines do not pass through the origin and hence the durations are not directly

proportional to the dataset size.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70

D
u

ra
ti
o

n
 (

in
 s

e
c
o

n
d

s
)

Size of input data set (in GB)

(a) WikiTrends

Shuffle Avg
Shuffle Max
Reduce Avg
Reduce Max

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

D
u

ra
ti
o

n
 (

in
 s

e
c
o

n
d

s
)

Size of input data set (in GB)

(b) WordCount

Shuffle Avg
Shuffle Max
Reduce Avg
Reduce Max

Fig. 5. Linear scaling of shuffle and reduce durations for WikiTrends and WordCount.

We observe similar results for Grep and Sort applications but do not include them

in the paper due to lack of space.

5.3 Performance Bounds of Job Completion Times

In section 4, we designed performance bounds that can be used for estimating the com-

pletion time of MapReduce application with a given job profile. The expectations are

that the job profile can be built using a set of job executions for processing small size

input datasets, and then this job profile can be used for predicting the completion time of

the same application processing a larger input dataset. Therefore, in these experiments,

first, the job profiles are built using the three trials on small datasets (e.g., 4.3, 8.7

and 13.1 GB for WordCount) with different numbers of map and reduce slots. After

that, by applying linear regression to the extracted job profiles from these runs, we

determine the scaling factors for shuffle and reduce phases of our MapReduce jobs. The

derived scaling factors are used to represent the job performance characteristics and to

extrapolate the duration of the shuffle and reduce phases when the same applications

are used for processing larger input datasets with parameters shown in the following

table:

Parameters Twitter Sort WikiTrends WordCount

of map tasks 370 1024 168 425

of reduce tasks 64 64 64 64

of map slots 64 64 64 64

of reduce slots 16 32 8 8

Finally, by using the updated job profiles and applying the formulae described in

Section 4, we predict the job completion times.

The results of these experiments are shown in Figure 6. We observe that the relative

error between the predicted average T avg
J and the measured job completion time is

less than 10% in all cases. However, for three applications (Sort, WikiTrends, and

WordCount) the average time is below the measured one. We believe that the set of ex-

periments in the staging environment should help to choose which bound (or weighted

combination of them) should be used for more accurate estimate of the job comple-

tion time. The predicted upper bound on the job completion time Tup
J can be used for

ensuring SLOs. The solid fill color within the bars in

Figure 6 represent the reduce stage duration, while the pattern portion reflects the

duration of the map stage. For Grep, Sort, and WordCount, bounds derived from the

 0

 100

 200

 300

 400

 500

 600

 700

 800

Twitter Sort WikiTrends WordCount

T
im

e
 (

in
 s

e
c
o

n
d

s
)

Job Executions

Predicted min (TJ
min

)
Measured

Predicted max (TJ
max

)

Fig. 6. Comparison of predicted and measured job completion times.

profile provide a good estimate for map and reduce stage durations. For WikiTrends, we

observe a higher error in the estimation of the durations, mostly, due to the difference

in processing of the unequal compressed files as inputs.

The power of the proposed approach is that it offers a compact job profile that can be

derived in a small staging environment and then used for completion time prediction of

the job on a large input dataset while also using different amount of resources assigned

to the job.

5.4 SLO-based Resource Provisioning

In this section, we perform experiments to validate the accuracy of the SLO-based

resource provisioning model introduced in Section 4.5. It operates over the following

inputs i) a job profile built in the staging environment using smaller datasets, ii) the

targeted amount of input data for processing, iii) the required job completion time. We

aim to evaluate the accuracy of resource allocations recommended by the model for

completing the job within a given deadline.

Figure 7 shows a variety of plausible solutions (the outcome of the SLO-based

model) for Grep, WikiTrends and WordCount with a given deadline D= 5, 9, and

8 minutes respectively. The X and Y axes of the graph show the number of map and

reduce slots respectively that need to be allocated in order to meet the job’s deadline.

Figure 7 presents three curves that correspond to three possible design choices for

computing the required map/reduce slots as discussed in Section 4.5: when the given

time T is targeted as the lower bound, upper bound, or the average of the lower and

upper bounds. As expected, the recommendation based on the upper bound (worst case

scenario) suggests more aggressive resource allocations with a higher number of map

and reduce slots as compared to the resource allocation based on the lower bound. The

difference in resource allocation is influenced by the difference between the lower and

upper bounds. For example, Grep has very tight bounds which lead to more similar re-

source allocations based on them. For WikiTrends the difference between the lower and

upper bounds of completion time estimates is wider, which leads to a larger difference

in the resource allocation options.

Next, we perform a set of experiments with the applications on our 66-node Hadoop

cluster. We sample each curve in Figure 7, and execute the applications with recom-

mended allocations of map and reduce slots in our Hadoop cluster to measure the actual

job completion times. Figure 8 summarizes the results of these experiments. If we base

our resource computation on the lower bound of completion time, it corresponds to the

“ideal” scenario. The model based on lower bounds suggests insufficient resource allo-

cations: almost all the job executions with these allocations have missed their deadline.

The closest results are obtained if we use the model that is based on the average of

lower and upper bounds of completion time. However, in many cases, the measured

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

re
d

u
c
e

 s
lo

ts

Number of map slots

Lower bound
Average

Upper bound

(a) Twitter (D = 9 mins)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

re
d

u
c
e

 s
lo

ts

Number of map slots

Lower bound
Average

Upper bound

(b) WikiTrends (D = 9 mins)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

re
d

u
c
e

 s
lo

ts

Number of map slots

Lower bound
Average

Upper bound

(c) WordCount (D = 8 mins)

Fig. 7. Different allocation curves based on bounds for different deadlines.

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12 14

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Different executions

SLO
Lower bound based

Average based
Upper bound based

(a) Twitter

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Different executions

SLO
Lower bound based

Average based
Upper bound based

(b) WikiTrends

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Different executions

SLO
Lower bound based

Average based
Upper bound based

(c) WordCount

Fig. 8. Do we meet deadlines using the bounds?

completion time can exceed a given deadline (by 2-7%). If we base our computation

on the upper bounds of completion time, the model over provisions resources. While

all the job executions meet their deadline, the measured job completion times are lower

than the target SLO, often by as much as 20%. The resource allocation choice will

depend on the user goals and his requirements on how close to a given SLO the job

completion time should be. The user considerations might also take into account the

service provider charging schema to evaluate the resource allocation alternatives on the

curves shown in Figure 7.

5.5 Prediction of Job Completion Time with Failures

In this section, we validate the model for predicting the job completion time with fail-

ures introduced in Section 4.4. For this experiment, we set the heartbeat interval to 3s. If

a heartbeat is not received in the last 20s, the worker node is assumed to have failed. We

use the WikiTrends application which consists of 720 map and 120 reduce tasks. The

application is allocated 60 map and 60 reduce slots. The WikiTrends execution with

given resources takes t = 1405s to complete under normal circumstances. Figure 9

shows a set of two horizontal lines that correspond to lower and upper bounds of the

job completion time under normal case.

Then, using the model with failures introduced in Section 4.4, we compute the lower

and upper bounds for job completion time when a failure happens at time tf (time is

represented by X-axes). The model considers two different scenarios: when resources of

the failed node are 1) replenished and 2) not replenished. These scenarios are reflected

in Figure 9 (a) and (b) respectively. Figure 9 shows the predicted lower and upper

bounds (using the model with failures) along with the measured job completion time

when the worker process is killed at different points in the course of the job execution.

The shape of the lines (lower and upper bounds) for job completion time with fail-

ures is quite interesting. While the completion time with failures increases compared to

the regular case, but this increase is practically constant until approximately t = 1200s.

The map stage completes at t = 1220(±10)s. So, the node failure during the map stage

has a relatively mild impact on the overall completion time, especially when the failed

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200 1400

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Normal job execution timeline (in seconds)

(a) Replenishable resources

Lower bound w/ failure
Upper bound w/ failure

Measured w/ failure
Lower bound w/o failure
Upper bound w/o failure

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200 1400

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Normal job execution timeline (in seconds)

(b) Non-replenishable failed resources

Lower bound w/ failure
Upper bound w/ failure

Measured w/ failure
Lower bound w/o failure
Upper bound w/o failure

Fig. 9. Model with failures: two cases with replenishable resources and non-replenishable failed

resources.

resources are replenished. However, if the failure happens in the reduce stage (especially

towards the end of the job processing) then it has a more significant impact on the

job completion time even if the failed node resources are replenished. Note that the

measured job completion time with failures stays within predicted bounds, and hence

the designed model can help the user to estimate the worst case scenario.

6 Related Work

Originally, MapReduce (and its open source implementation Hadoop) was designed

for periodically running large batch workloads. With a primary goal of minimizing the

job makespan the simple FIFO scheduler was very efficient and there was no need for

special resource provisioning since the entire cluster resources could be used by the

submitted job. As the number of users sharing the same MapReduce cluster increased,

a new Capacity scheduler [5] was introduced to support more efficient cluster sharing.

Capacity scheduler partitions the resources into pools and provides separate queues and

priorities for each pool. By enabling partitioning of the cluster resources, the users and

system administrators do need to answer an additional question: how much resources do

the time-sensitive jobs require and how to translate these requirements in the capacity

scheduler settings? This question is still open: there are many research efforts discussed

below that aim to design a MapReduce performance model for resource provisioning

and predicting the job completion time.

In order to maintain fairness between different users, the Hadoop Fair Scheduler

(HFS) [6] allocates equal shares to each of the users running the MapReduce jobs.

It also tries to maximize data locality by delaying the scheduling of the task, if no

local data is available. Similar fairness and data locality goals are pursued in Quincy

scheduler [7] proposed for the Dryad environment [8]. However, both HFS and Quincy

do not provide any special support for achieving the application performance goals and

the service level objectives (SLOs). Flex [9] aims to optimize some given scheduling

metric and augments HFS by a special slot allocation schema. However, this approach

is different from ours because it does not provide support for achieving job completion

deadlines. Dynamic proportional share scheduling [10] allows users to bid for map

and reduce slots by adjusting their spending over time. While this approach allows

dynamically controlled resource allocation, it is driven by economic mechanisms rather

than a performance model and/or application profiling.

Polo et al. [11] introduce an online job completion time estimator which can be

used for adjusting the resource allocations of different jobs. However, their estimator

tracks the progress of the map stage alone and has no information or control over the

reduce stage. Ganapathi et al. [12] use Kernel Canonical Correlation Analysis to predict

the performance of MapReduce workloads. However, they concentrate on Hive queries

and do not attempt to model the actual execution of the MapReduce job. The authors

discover the feature vectors through statistical correlation.

Morton et al. [13] propose ParaTimer for estimating the progress of parallel queries

expressed as Pig scripts [14] that can translate into directed acyclic graphs (DAGs)

of MapReduce jobs. In their earlier work [15], they designed Parallax – a progress

estimator that aims to predict the completion time of a limited class of Pig queries

that translate into a sequence of MapReduce jobs. In both papers, instead of a detailed

profiling technique that is designed in our work, the authors rely on earlier debug runs

of the same query for estimating throughput of map and reduce stages on the input

data samples provided by the user. The approach is based on precomputing the ex-

pected schedule of all the tasks, and therefore identifying all the pipelines (sequences of

MapReduce jobs) in the query. The approach relies on a simplistic assumption that map

(reduce) tasks of the same job have the same duration. It is not clear how the authors

measure the duration of reduce tasks (what phases of the reduce task are included in the

measured duration), especially since the reduce task durations of the first wave and later

waves are very different. Usage of the FIFO scheduler limits the approach applicability

for progress estimation of multiple jobs running in the cluster with a different Hadoop

scheduler, especially if the amount of resources allocated to a job varies over time or

differs from the debug runs used for measurements.

Phan et al. [16] aim to build an optimal schedule for a set of MapReduce jobs with

given deadlines. The authors investigate different factors that impact job performance

and its completion time such as ratio of slots to core, the number of concurrent jobs,

data placement, etc. MapReduce jobs with a single map and reduce waves are con-

sidered, and the scheduling problem is formulated as a constraint satisfaction problem

(CSP). There are some other simplifications in MapReduce job processing where the

data transfer (shuffle and sort) is considered as a separate (intermediate) phase between

map and reduce tasks while in reality the shuffle phase overlaps significantly with map

stage. All these assumptions and the CSP complexity issues, make it difficult to extend

the proposed approach for a general case.

Cardosa at al. [17] propose a provisioning framework, called STEAMEngine, which

is a family of provisioning algorithms to optimize different user or provider metrics,

such as runtime, cost, throughput, or energy. STEAMEngine accumulates the database

of historic observations (the same job completion times for different input dataset sizes

and cluster sizes). The authors suggest to perform a few experiments for a small dataset

and different cluster size combinations to enable the extrapolation technique. The pro-

file database has separate runtimes of map and reduce phases of these job executions.

While the idea of job profiling on a smaller dataset and a smaller cluster is similar to

ours, the proposed profiling technique is very different. The authors only can scale the

entire cluster for a job, and cannot separately scale the number of map/reduce slots.

STEAMEngine relies on linear scaling which does not always work accurately as we

demonstrated earlier in Section 3.

Much of the recent work also focuses on anomaly detection, stragglers and outliers

control in MapReduce environments [18–22] as well as on optimization and tuning

cluster parameters and testbed configuration [23, 24]. While this work is orthogonal

to our research, the results are important for performance modeling in MapReduce

environments. Providing more reliable, well performing, balanced environment enables

reproducible results, consistent job executions and supports more accurate performance

modeling and predictions.

7 Conclusion

In this work, we designed a novel framework that aims to enrich private and public

clouds offering with an SLO-driven resource sizing and provisioning service in MapRe-

duce environments. While there are quite a few companies that offer Hadoop clusters

for rent, they do not provide additional performance services to answer a set of typical

questions: How much resources the user application needs in order to achieve certain

performance goals and complete data processing by a certain time. What is the impact

of failures on the job completion time? To answer these questions, we introduced a

novel profiling technique for MapReduce applications by building a compact but rep-

resentative job profile in a staging environment. The approach allows executing a given

application on the set of the small input datasets. Then by applying a special scaling

technique and designed performance models, one can estimate the resources required

for processing a targeted large dataset while meeting given SLOs. We also designed a

performance model for estimating the impact of failures on MapReduce applications.

We validated the accuracy of our approach and designed performance models using

a set of realistic applications in the 66-node Hadoop cluster. The accuracy of the results

depends on the resource contention, especially, the network contention in the production

Hadoop cluster. In our testbed (both in staging and production clusters) the network was

not a bottleneck, and it led to the accurate prediction results for job completion time.

Typically, service providers tend to over provision network resources to avoid undesir-

able side effects of network contention. At the same time, it is an interesting modeling

question whether such a network contention factor can be introduced, measured, and

incorporated in the proposed performance models. We also would like to automate the

process of creating representative small dataset samples for job profiling from a given

large input dataset. Another interesting future work is the resource provisioning of more

complex applications that are defined as a composition of MapReduce jobs and meeting

the SLO requirements for a given set of MapReduce jobs.

References

1. J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” Com-

munications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

2. O. OMalley and A. Murthy, “Winning a 60 second dash with a yellow elephant,” 2009.

3. T. White, Hadoop:The Definitive Guide. Page 6,Yahoo Press.

4. R. Graham, “Bounds for certain multiprocessing anomalies,” Bell System Tech. Journal,

vol. 45, pp. 1563–1581, 1966.

5. Apache, “Capacity Scheduler Guide,” 2010. [Online]. Available: http://hadoop.apache.org/

common/docs/r0.20.1/capacity scheduler.html

6. M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Delay

scheduling: A simple technique for achieving locality and fairness in cluster scheduling,” in

Proc. of EuroSys. ACM, 2010, pp. 265–278.

7. M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg, “Quincy: fair

scheduling for distributed computing clusters,” in Proc. of the ACM SIGOPS symposium on

Operating systems principles. ACM, 2009.

8. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed data-parallel

programs from sequential building blocks,” ACM SIGOPS OS Review, vol. 41, no. 3, 2007.

9. J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh, K.-L. Wu, and

A. Balmin, “FLEX: A Slot Allocation Scheduling Optimizer for MapReduce Workloads,”

ACM/IFIP/USENIX Intl. Middleware Conference, 2010.

10. T. Sandholm and K. Lai, “Dynamic Proportional Share Scheduling in Hadoop,” LNCS: Proc.

of the 15th Workshop on Job Scheduling Strategies for Parallel Processing, 2010.

11. J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguadé, M. Steinder, and I. Whalley,

“Performance-driven task co-scheduling for mapreduce environments,” in 12th IEEE/IFIP

Network Operations and Management Symposium, 2010.

12. A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-driven workload mod-

eling for the cloud,” in Proceedings of SMDB, 2010.

13. K. Morton, M. Balazinska, and D. Grossman, “ParaTimer: a progress indicator for MapRe-

duce DAGs,” in Proceedings of SIGMOD. ACM, 2010, pp. 507–518.

14. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin: a not-so-foreign

language for data processing,” in Proceedings of SIGMOD. ACM, 2008, pp. 1099–1110.

15. K. Morton, A. Friesen, M. Balazinska, and D. Grossman, “Estimating the progress of

MapReduce pipelines,” in Proceedings of ICDE. IEEE, 2010, pp. 681–684.

16. L. Phan, Z. Zhang, B. Loo, and I. Lee, “Real-time MapReduce Scheduling,” in Technical

Report No. MS-CIS-10-32, University of Pennsylvania, 2010.

17. M. Cardosa, P. Narang, A. Chandra, H. Pucha, and A. Singh, “Driving MapReduce Provi-

sioning in the Cloud,” in Technical Report TR10-023, University of Minnesota, 2010.

18. M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica, “Improving mapreduce perfor-

mance in heterogeneous environments,” in OSDI, 2008.

19. A. Konwinski, M. Zaharia, R. Katz, and I. Stoica, “X-tracing Hadoop,” Hadoop Summit,

2008.

20. J. Tan, X. Pan, S. Kavulya, E. Marinelli, R. Gandhi, and P. Narasimhan, “Kahuna: Prob-

lem Diagnosis for MapReduce-based Cloud Computing Environments,” in 12th IEEE/IFIP

NOMS, 2010.

21. J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Visual, Log-Based Causal Tracing for

Performance Debugging of MapReduce Systems,” in ICDCS. IEEE, 2010, pp. 795–806.

22. G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris,

“Reining in the Outliers in Map-Reduce Clusters using Mantri,” OSDI, 2010.

23. Intel, “Optimizing Hadoop* Deployments,” 2010. [Online]. Available: http://communities.

intel.com/docs/DOC-4218

24. K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing hadoop provisioning in the

cloud,” in Proc. of the First Workshop on Hot Topics in Cloud Computing, 2009.

