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Abstract—Hadoop and the associated MapReduce paradigm,
has become the de facto platform for cost-effective analytics
over “Big Data”. There is an increasing number of MapRe-
duce applications associated with live business intelligence
that require completion time guarantees. There is a lack of
performance models and workload analysis tools for automated
performance management of such MapReduce jobs. In this
work, we introduce and analyze a set of complementary
mechanisms that enhance workload management decisions
for processing MapReduce jobs with deadlines. The three
mechanisms we consider are the following: 1) a policy for
job ordering in the processing queue; 2) a mechanism for
allocating a tailored number of map and reduce slots to each
job with a completion time requirement; 3) a mechanism for
allocating and deallocating (if necessary) spare resources in
the system among the active jobs. We analyze the functionality
and performance benefits of each mechanism via an extensive
set of simulations over diverse workload sets. The proposed
mechanisms form the integral pieces in the performance puzzle
of automated workload management in MapReduce environ-
ments. We implement a novel deadline-based Hadoop scheduler
that integrates all these three mechanisms and provides an
efficient support for serving MapReduce jobs with deadlines.
The results of our simulation study are validated through
experiments on a 66-node Hadoop cluster.
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I. INTRODUCTION

Hadoop, and the associated MapReduce paradigm, has

become the compelling choice for performing advanced

analytics over unstructured information and enabling effi-

cient “Big Data” processing. There is an increasing number

of MapReduce applications, e.g., personalized advertising,

sentiment analysis, spam detection, real-time event log anal-

ysis, etc., that require completion time guarantees and are

deadline-driven. In an enterprise setting, users share Hadoop

clusters and benefit from processing a diverse variety of

applications over the same or different datasets. None of

the existing Hadoop schedulers support completion time

guarantees. There are a few research efforts that suggest

different approaches for addressing this goal [1]–[3].

In this work, we continue a direction that is initiated

in ARIA [1]. First of all, many production jobs are run

periodically on new data. We take advantage of this ob-

servation, and for a job that is routinely executed on a

new dataset, we automatically build its job profile that

reflects critical performance characteristics of the underlying

application during all the execution phases: map, shuffle,

sort, and reduce phases. Our profiling technique does not

require any modifications or instrumentation of either the

application or of the underlying Hadoop execution engine.

All this information can be obtained from the counters at the

job master during the job’s execution or alternatively parsed

from the logs.

Second, using the knowledge about the job profiles, we

design a set of MapReduce performance models with com-

plementary functionality: i) for a given job, we can estimate

the job completion time as a function of allocated resources,

and ii) for a given job with a specified soft deadline (job’s

SLO), we can estimate the amount of map and reduce slots

required for completing the job within the deadline.

In this paper, we introduce and analyze a set of comple-

mentary mechanisms that enhance workload management

decisions for processing MapReduce jobs with deadlines.

The three mechanisms we consider are the following:

1) An ordering policy for the jobs in the processing queue.

For example, even if no profiling information is available

about the arriving MapReduce jobs, one can utilize the job

deadlines for ordering. The job ordering based on the EDF

policy (Earliest Deadline First) was successfully used in

real-time processing. The EDF job ordering might be used

with a default resource allocation policy in Hadoop, where

the maximum number of available map (or reduce) slots

is allocated to each job at the head of the queue. The

possible drawback of this scheme is that in many cases,

it is impossible to preempt/reassign the already allocated

resources to a newly arrived job with an “earlier” deadline

without killing the running tasks.

2) A mechanism for allocating a tailored number of map

and reduce slots to each job for supporting the job comple-

tion goals. If the job profiling information is available, then

our resource allocation policy can be much more precise

and intelligent: for each job with a specified deadline, we

can estimate and allocate the appropriate number of map

and reduce slots required for completing the job within the

deadline. The interesting feature of this mechanism is that

as the time progresses and the job deadline gets closer,

the introduced mechanism can recompute (and adjust) the

amount of resources needed by each job to meet its deadline.

3) A mechanism for allocating and deallocating (if neces-

sary) spare resources in the system among the active jobs.

Assume that a cluster has spare resources, i.e., unallocated

map and reduce slots left after each job was assigned its

minimum resource quota for meeting a given deadline. It

would be beneficial to design a mechanism that allocates

these spare resources among the running jobs to improve

the Hadoop cluster utilization and its performance. The

main challenge in designing such a mechanism is accurate

decision making on how the slots in the cluster should be



re-allocated or de-allocated to the newly-arrived job with

an earlier deadline. The naı̈ve, straightforward approach

could de-allocate the spare resources by cancelling their

running tasks, and then by re-allocating these slots to the

new job. However, it may lead to undesirable churn in re-

source allocation and wasted, unproductive usage of cluster

resources. In this paper, we introduce a novel mechanism

that enables a scheduler to accurately predict whether the

cluster will have a sufficient amount of released resources

over time for the new job to be completed within its deadline.

The mechanism exploits the job profile information for

making the prediction. It uses a novel modeling technique

to avoid cancelling the currently running tasks if possible.

The mechanism de-allocates the spare slots (i.e., cancels the

execution of extra tasks above the minimum resource quota

for each job) only when the amount of released resources

over time does not guarantee a timely completion of the

newly arrived job.

We implement a novel deadline-based Hadoop scheduler

that integrates all the three mechanisms. We analyze the

functionality and performance benefits of each mechanism

via an extensive set of simulations over diverse workload

sets. The analysis presents a set of performance metrics

that reflect the quality of job scheduling and slot alloca-

tion decisions provided by these different mechanisms. The

solution that integrates all the three mechanisms is a clear

winner in providing the most efficient support for serving

MapReduce jobs with deadlines. We observe a similarity

in simulation results for two different workload sets, that

leads us to believe in the generality of presented conclusions.

The results of our simulation study are validated through

experiments on a 66-node Hadoop cluster. The remainder of

the paper presents our results in more detail.

II. BACKGROUND

This section provides a basic background on the MapRe-

duce framework and its open source implementation

Hadoop. We also briefly outline the performance modeling

approach introduced in ARIA [1] and used in this work.

MapReduce jobs are distributed and executed across mul-

tiple machines: the map stage is partitioned into map tasks

and the reduce stage is partitioned into reduce tasks. Each

map task processes a logical split of the input data (default

size is 64 MB). The map task applies the user-defined map

function on each record and buffers the resulting output.

This intermediate data is hash-partitioned for the different

reduce tasks and written to the local hard disk of the

worker executing the map task. The reduce stage consists

of shuffle/sort and reduce phases. In the shuffle/sort phase,

the reduce tasks fetch the intermediate data files from map

tasks. Finally, in the reduce phase, the sorted intermediate

data (in the form of a key and all its corresponding values)

is passed to the user-defined reduce function. Note, that the

reduce tasks can process their data only after all the map

tasks are completed. The output from the reduce function is

generally written back to the distributed file system.

Job scheduling in Hadoop is performed by the job master,

which manages a number of worker nodes in the cluster.

Each worker has a fixed number of map and reduce slots,

which can run tasks. The number of map and reduce slots is

statically configured (typically to one or two per core). The

workers periodically send heartbeats to the master reporting

the number of free slots and the progress of the tasks that

they are currently running. Based on the availability of free

slots and the scheduling policy, the master assigns map

and reduce tasks to slots in the cluster. Currently, none

of the existing Hadoop schedulers (e.g., FIFO, Capacity

scheduler [4], or Hadoop Fair Scheduler [5]) are designed to

support MapReduce jobs with completion time goals. There

were a few research efforts that suggest different approaches

for addressing this goal [1]–[3].
In this work, we continue a direction that is initiated in

ARIA [1]. The proposed MapReduce performance model [1]

evaluates lower and upper bounds on the job completion

time. It is based on a general model for computing perfor-

mance bounds on makespan of a given set of n tasks that

are processed by k servers (e.g., n map tasks are processed

by k slots in MapReduce environment). Let T1, T2, . . . , Tn

be the duration of n tasks in a given set. Let k be the

number of slots that can each execute one task at a time. The

assignment of tasks to slots is done using an online, greedy

algorithm: assign each task to the slot which finished its

running task the earliest. Let avg and max be the average

and maximum duration of the n tasks respectively. Then the

makespan of a greedy task assignment is at least (n ·avg)/k
and at most (n− 1) · avg/k+max. These lower and upper

bounds on the completion time can be easily computed if

we know the average and maximum durations of the set of

tasks and the number of allocated slots.
As motivated by the above model, in order to approximate

the overall completion time of a MapReduce job, we need

to estimate the average and maximum task durations during

different execution phases of the job, i.e., map, shuffle/sort,

and reduce phases. Measurements such as M j
avg (Rj

avg),

the average map (reduce) task duration for a job j can

be obtained from the execution logs that record past job

executions. In our earlier paper [1], we describe the au-

tomated profiling tool that extracts a compact MapReduce

job profile from the past job executions. By applying the

outlined bounds model, we can express the estimates for

job completion time (lower bound T low
J and upper bound

Tup
J ) as a function of map/reduce tasks (NJ

M , NJ
R) and the

allocated map/reduce slots (SJ
M , SJ

R) using the following

equation form:

T low
J = Alow

J ·
NJ

M

SJ
M

+Blow
J ·

NJ
R

SJ
R

+ Clow
J (1)

The equation for Tup
J can be written in a similar form

(for details, see [1]). Typically, the average of lower and

upper bounds (T avg
J ) is a good approximation of the job

completion time.
Note that once we have a technique for predicting the job

completion time, it also can be used for solving the inverse



problem: finding the appropriate number of map and reduce

slots that could support a given job deadline. Equation 1

yields a hyperbola if SJ
M and SJ

R are the variables. All

integral points on this hyperbola are possible allocations

of map and reduce slots which result in meeting the same

deadline. There is a point where the sum of the required map

and reduce slots is minimized. We calculate this minima on

the curve using Lagrange’s multipliers [1], since we would

like to conserve (minimize) the number of map and reduce

slots required for the adequate resource allocation per job.

III. THREE PIECES OF THE PUZZLE IN

DEADLINE-BASED WORKLOAD MANAGEMENT

In this section, we introduce a set of complementary

mechanisms that enhance the scheduling and resource allo-

cation decisions for processing MapReduce jobs with dead-

lines. The three mechanisms considered are the following:

1) the job ordering in the processing queue;

2) the amount of resources (the number of map and

reduce slots) that are allocated for each job processing;

3) the policy for allocating and deallocating the spare

resources in the system among the active jobs.

In this section, we discuss the intuition and logic behind

these mechanisms as well as their implementation details.

A. Job Ordering Policy

The job ordering in workload management emphasizes

solely the ordering of jobs to achieve performance enhance-

ments. For example, real-time operating systems employ

a dynamic scheduling policy called Earliest Deadline First

(EDF) which is one of traditional (textbook) scheduling poli-

cies for jobs with deadlines. EDF is an optimal scheduling

algorithm on preemptive uniprocessors [6] in the following

sense: if a collection of independent jobs, each characterized

by an arrival time, an execution requirement, and a deadline,

can be scheduled (by any algorithm) such that all the jobs

complete by their deadlines, then EDF will schedule this set

of jobs such that they all complete by their deadlines.

The nature of MapReduce job processing differs sig-

nificantly from the traditional EDF assumptions. None of

the known classic results are directly applicable to job/task

scheduling with deadlines in MapReduce environments,

where the job completion time is a function of allocated

resources (as was demonstrated in Section II). Therefore,

just using the EDF job ordering as a basic mechanism

for deadline-based scheduling in MapReduce environments

will not alone be sufficient to support the job completion

time guarantees. The next section discusses the additional

mechanism that aims to enhance the EDF job ordering by

enabling a tailored resource allocation for a MapReduce job

with a given deadline and a known job profile.

B. Resource Allocation Policy

Job scheduling in Hadoop is performed by a master node,

which manages a number of worker nodes in the cluster. As

we discussed in Section II, the job ordering defines which

job should be processed next by the master. In addition, the

scheduling policy of the job master should decide how many

map/reduce slots should be allocated to a current job.

A simple default resource allocation policy in Hadoop

assigns the maximum number of map (or reduce) slots for

each job in the queue. For example, the original FIFO

scheduler in Hadoop follows this policy. Thus, each job is

allocated the maximum amount of resources defined either

by the maximum number of slots available in the cluster or

by the maximum number of map/reduce tasks comprising

the job (if it is smaller than the number of available slots in

the cluster). Let us denote the policy with Earliest Deadline

First job ordering and the default resource allocation as

just EDF. This policy reflects the performance that can

be achieved when there is no additional knowledge about

performance characteristics of the arriving MapReduce jobs.

However, the possible drawback of this default policy is

that it always allocates the maximum resources to each

job, and does not try to tailor the appropriate amount of

resources that is necessary for completing the job within

its deadline. Therefore, in many cases, it is impossible to

preempt/reassign the already allocated resources (without

killing the running tasks) to provide resources for a newly

arrived job with an earlier deadline.

In the case where the job profiles are known, we can

use this additional knowledge in performance modeling for

the accurate estimates of map and reduce slots required

for completing the job within the deadline. We call the

mechanism that allocates the minimal resource quota re-

quired for meeting a given job deadline as MinEDF. The

interesting and powerful feature of this mechanism is that

as the time progresses and the job deadline gets closer to the

current time, the introduced mechanism can recompute and

adjust the amount of resources needed to each job to meet

its deadline. So, in essence, MinEDF aims to dynamically

allocate the minimum sufficient resources to the job for

completing within the deadline while leaving the remaining,

spare resources to the future arriving jobs.

C. Allocating and De-allocating Spare Cluster Resources

Among the Active Jobs

When there is a large number of jobs competing for cluster

resources the mechanism that allocates only the minimal

quota of map and reduce slots for meeting job deadlines is

appealing and may seem like the right approach. However,

assume that a cluster has spare resources, i.e., unallocated

map and reduce slots left after each job has been assigned

its minimum resource quota. Then, the question is whether

we could design a mechanism that allocates these spare

resources among the currently active jobs to improve the

Hadoop cluster utilization and its performance, but in case

of a new job arrival with an earlier deadline, these slots

can be dynamically de-allocated (if necessary) to service

the newly-arrived job with an earlier deadline.

Extracted job profiles can be used for two complementary

goals. First, they can be used for performance modeling



of the job completion time and required resources. Second,

since the job profiles provide information about map/reduce

task durations, these metrics can be used to estimate when

the allocated map/reduce slots are going to be released back

to the job master for re-assignment. This way, we have

a powerful modeling mechanism that enables a scheduler

to predict whether the newly arrived job (with a deadline

earlier than deadlines of some actively running jobs) can

be completed in time by simply waiting while some of the

allocated slots finish processing their current tasks before

being re-allocated to the newly arrived job. If the prediction

returns a negative answer, i.e., the amount of released

resources over time does not guarantee a completion of the

newly arrived job with a given deadline, then the scheduler

makes a decision of how many of the slots (as well as

which ones) should cancel processing their tasks, and be re-

allocated to the new job immediately. For this cancellation

procedure, the scheduler only considers the so-called spare

slots, i.e., the slots that do not belong to the minimum quota

of slots allocated to the currently running jobs for meeting

their deadlines.
This designed mechanism further enhances the MinEDF

functionality to efficiently utilize spare cluster resources.

It resembles work-conserving scheduling, so we refer to it

as MinEDF-WC. We have implemented MinEDF-WC as a

novel deadline-based Hadoop scheduler that integrates all

the three mechanisms and provides an efficient support for

serving MapReduce jobs with deadlines. Algorithm 1 re-

flects how these three mechanisms work together as integral

parts of the intelligent workload management in MapRe-

duce environments. The pseudo-code shown in Algorithm 1

presents job scheduling and detailed slot allocation scheme.

IV. EVALUATION

In this section, we analyze performance benefits of the

three mechanisms introduced in Section III by comparing

performance of EDF,MinEDF, andMinEDF-WC. Note, that

the EDF scheduler uses only one out of three mechanisms:

it applies EDF job ordering with a default resource alloca-

tion policy. The MinEDF scheduler uses two out of three

introduced mechanisms: in addition to EDF job ordering it

utilizes the mechanism for allocating a tailored amount of

map and reduce slots to each job for meeting its deadline.

Finally, MinEDF-WC represents a scheduler that integrates

all the three mechanisms for workload management of jobs

with deadlines.
First, we analyze these schedulers and their performance

with our simulation environment SimMR [7]. SimMR is

comprised of three components: i) Trace Generator that

creates a replayable MapReduce workload; ii) Simulator

Engine that accurately emulates the job master functionality

in Hadoop; and iii) a pluggable scheduling policy that

dictates the scheduler decisions on job ordering and the

amount of resources allocated to different jobs over time.

We perform simulation experiments with two workload sets:

1) A synthetic trace generated with statistical distribu-

tions that characterize the Facebook workload, and

Algorithm 1 Min Earliest Deadline First - Work Conserving
(MinEDF-WC) Algorithm

Input: New Job Ĵ with deadline DĴ , Priority Queue of currently
executing jobs, Number of free map slots FM , Number of free
reduce slots FR, Number N

j

M of map tasks and N
j

R of reduce
tasks in Job j

1: ON THE ARRIVAL OF NEW JOB Ĵ :

2: (MinMaps
Ĵ
, MinReduces

Ĵ
) ← ComputeMinResources(Ĵ , D

Ĵ
)

3: // Do we have enough resources to meet this job’s deadline right now?
4: if MinMaps

Ĵ
< FM and MinReduces

Ĵ
< FR then return

5: // Will we have enough resources in the future?
6: Sort jobs by increasing task durations
7: for each job j in jobs do

8: if CompletedMapsj < N
j

M
and MinMaps

Ĵ
> FM then

9: // Job j is in the Map stage and Ĵ is short on map slots
10: ExtraMapsj ← RunningMapsj− MinMapsj
11: FM ← FM+ ExtraMapsj
12: (MinMaps

Ĵ
, MinReduces

Ĵ
) ← ComputeMinResources(Ĵ ,

D
Ĵ
- M

j
avg)

13: if MinMaps
Ĵ
< FM and MinReduces

Ĵ
< FR then return

14: else if CompletedMapsj = N
j

M
and MinReducesj > FR then

15: // Job j is in the Reduce stage and Ĵ is short on reduce slots
16: ExtraReducesj ← RunningReducesj− MinReducesj
17: FR ← FR+ ExtraReducesj
18: (MinMaps

Ĵ
, MinReduces

Ĵ
) ← ComputeMinResources(Ĵ ,

D
Ĵ
- R

j
avg)

19: if MinMaps
Ĵ
< FM and MinReduces

Ĵ
< FR then return

20: end if
21: end for

22: // Not enough resources to meet deadline in future, need to kill tasks
23: for each job j in jobs do
24: if RunningMapsj > MinMapsj then
25: FM ← FM+ RunningMapsj− MinMapsj
26: KillMapTasks(j, RunningMapsj− MinMapsj )
27: if MinMaps

Ĵ
< FM then return

28: end if
29: end for

30: ON RELEASE OF A MAP SLOT:

31: Find job j among jobs with earliest deadline and CompletedMapsj <

N
j

M
and RunningMapsj < MinMapsj return j

32: if such job j is not found, then return job j with the earliest deadline

with CompletedMapsj < N
j

M

33: ON RELEASE OF A REDUCE SLOT:

34: Find job j among jobs with earliest deadline and CompletedMapsj =

N
j

M
and CompletedReducesj < N

j

R
and RunningReducesj <

MinReducesj return j

35: if such job j is not found, then return job j with the earliest deadline

with CompletedMapsj = N
j

M
and CompletedReducesj < N

j

R

2) A real testbed trace comprised of multiple job runs in

our 66-node cluster.

Second, we validate the simulation results through exper-

iments on a 66-node Hadoop cluster with the following

configuration. Each node is an HP DL145 GL3 machine

with four AMD 2.39GHz cores, 8 GB RAM and two 160GB

hard disks. The machines are set up in two racks and inter-

connected with gigabit Ethernet. We use Hadoop 0.20.2 with

two machines for JobTracker and NameNode, and remaining

64 machines as worker nodes. Each slave is configured with



a single map and reduce slot. The default blocksize of the file

system is set to 64MB and the replication level is set to 3.

We disable speculation as it did not lead to any significant

improvements. Our simulated cluster mimics this 66-node

testbed configuration.

The next section describes the set of collected metrics

used for schedulers’ analysis and evaluation.

A. Metrics

Let the execution consist of a given set of n jobs

(J1, T
ar
1 , D1), (J2, T

ar
2 , D2), . . . , (Jn, T

ar
n , Dn), where T

ar
i

denotes the arrival time of job Ji and Di denotes the

corresponding deadline (relative to the arrival) of job

Ji. We assume that the profiles of the jobs J1, . . . , Jn
are known. Let these jobs be completed at times

T compl
1

, T compl
2

, . . . , T compl
n , and let Θ be the set of all

jobs whose deadline has been exceeded. We evaluate the

scheduling policies described in the previous section based

on the following metrics:

1) Relative deadline exceeded: This metric denotes the

the sum of the relative deadlines exceeded.
∑

J∈Θ

(T compl
J − T ar

J −DJ)/DJ

2) Missed-deadline jobs: It measures a fraction of jobs

that have exceeded their deadlines: Θ/n.
3) Average job completion time:

∑

1≤i≤n

(T compl
i − T ar

i )/n

4) Number of spare slot allocations: This metric only

applies to MinEDF-WC policy, where a job J might

be allocated extra slots in addition to the minimum

resource quota computed by the performance model.

This metric presents the aggregate number of extra

slots allocated across all the jobs over time.

5) Number of spare slot processing cancellations: This

metric only applies to MinEDF-WC. It presents the

aggregate number of extra slots allocated and then

cancelled during their processing (i.e., with tasks being

killed) across all the jobs over time.

B. Simulation Results with Synthetic Facebook Workload

For the Facebook workload, we use the detailed de-

scription of MapReduce jobs in production at Facebook

in October 2009 provided by Zaharia et. al. [5]. Table I

summarizes the number of map and reduce tasks and the

number of jobs in the Facebook workload. We use the

plot of map and reduce durations in Fig. 1 of [5], and

try to identify the statistical distributions which best fits

the provided plot. We fit more than 60 distributions such

as Weibull, LogNormal, Pearson, Exponential, Gamma, etc.

using StatAssist1. Our analysis shows that the LogNormal

distribution fits best the provided Facebook task duration

1http://www.mathwave.com/help/easyfit/html/tools/assist.html

Bin Map Tasks Reduce Tasks # Jobs Run
1 1 NA 380
2 2 NA 160
3 10 3 140
4 50 NA 80
5 100 NA 60
6 200 50 60
7 400 NA 40
8 800 180 40
9 2400 360 20
10 4800 NA 20

Table I
Job sizes for each bin in Facebook workload (from Table 3 in [5]).

distributions. LN(9.9511, 1.6764) fits the map task duration

distribution with a Kolmogorov-Smirnov value of 0.1056,

where LN(x;µ, σ) = 1

xσ
√
2π

e−
(ln x−µ)2

2σ2 is the LogNormal

distribution with mean µ and variance σ. For the reduce

task duration, LN(12.375, 1.6262) fits with a Kolmogorov-

Smirnov value of 0.0451.

We use these respective LogNormal distributions to gen-

erate a synthetic workload (with 1000 jobs) that is similar

to a reported Facebook workload. The job deadline (which

is relative to the job completion time) is set to be uniformly

distributed in the interval [1 · TJ , 2 · TJ ], where TJ is the

completion time of job J given all the cluster resources (i.e.,

maximum number of map/reduce slots that job can utilize).

Figures 1 and 2 show the simulation results of process-

ing the generated synthetic Facebook workload with EDF,

MinEDF, and MinEDF-WC schedulers while varying the

mean of the exponential inter arrival times. The simulation

results are averaged over 100 runs.

Note, that performance of the EDF scheduler reflects

the very basic mechanism performance, i.e., deadline job

ordering only (with no additional job profiling available

or used). Figure 1(left) shows that MinEDF and MinEDF-

WC schedulers result in a significantly smaller relative

deadline exceeded metric compared to the EDF scheduler.

By adding the mechanism that utilizes job profiling and

performance modeling for allocating a tailored amount of

resources per job, the scheduler is able to dramatically

improve the resource allocation decisions that lead to a much

smaller deadline violation even under high job arrival rates.

Figure 1(center) shows thatMinEDF-WC scheduler is able to

support the smallest fraction of jobs missing their deadlines.

By adding the mechanism that intelligently allocates and de-

allocates spare resources in the cluster, the scheduler is able

to significantly improve the quality of resource allocation

decisions and to minimize the number of jobs missing

their deadlines. The impact of this mechanism can be also

observed in Figure 1(right) that reflects the most improved

average completion time under the work-conserving nature

of MinEDF-WC scheduler. Since MinEDF does not utilize

spare resources and only allocates the minimum resource

quota required for job completion within the deadline,

the average job completion time does not improve under

MinEDF even as the load decreases.

Figure 2 shows the number of extra resources allocated
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Figure 1. Comparing different metrics for Facebook workload: 1000 jobs averaged over 100 runs with deadline = [1 · TJ , 2 · TJ ]
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Figure 2. Comparing different metrics for Facebook workload: 1000 jobs
averaged over 100 runs with deadline = [1 · TJ , 2 · TJ ]

and de-allocated by the MinEDF-WC scheduler. Under high

load (inter-arrival time ≤ 100), there are very few spare

resources. As the load decreases, the number of spare slot

allocations increase. The number of killed tasks is very

low at any point: under high load it is small because very

few spare resources are available. At medium load some

of the allocated extra tasks have to be killed in order to re-

assign spare resources to more urgent jobs. At low loads, the

scheduler does not need to resort to killing tasks. Indeed,

the MinEDF-WC scheduler handles spare resources very

efficiently and avoids cancelling the currently running tasks

whenever possible.

C. Simulation Results with with Replayed Testbed Workload

Our testbed workload consists of a set of representative

applications executed on three different datasets as follows:

1) Word count application computes the occurrence

frequency of each word in 32GB, 40GB and 43GB

Wikipedia article history dataset.

2) Sort application sorts 16GB, 32GB and 64GB of

random generated text data.

3) Bayesian classification application from Mahout2

2http://mahout.apache.org

over three sizes Wikipedia article history datasets.

4) TF-IDF: the Term Frequency- Inverse Document Fre-

quency application from Mahout used over the same

Wikipedia articles history datasets.

5) WikiTrends application counts the number of times

each article has been visited. Wikipedia article traffic

logs were collected (and compressed) every hour in

April, May and June 2010.

6) Twitter: This application uses the 12GB, 18GB and

25GB twitter dataset created by Kwak et. al. [8]

containing an edgelist of twitter userids. Each edge

(i, j) means that user i follows user j. The Twitter

application counts the number of asymmetric links in

the dataset, that is, (i, j) ∈ E, but (j, i) /∈ E.

For the real workload trace, we use a mix of six described

applications with three different input dataset sizes. We run

these 18 jobs in our 66-nodes Hadoop testbed, and create the

replayable job traces for SimMR. We generate an equally

probable random permutation of arrival of these jobs and

assume that the inter-arrival time of the jobs is exponential.

Figures 3 and 4 show the simulation results for processing

1000 jobs (consisting of multiple permutations of the 18 jobs

described above) under the EDF, MinEDF, and MinEDF-

WC schedulers and the deadlines being generated using the

interval [2 · TJ , 4 · TJ ]. The results are averaged over 100

runs.

These simulation results reflect our scheduler’s perfor-

mance over a broader range of loads in the cluster. At very

high loads, the cluster is under significant overload, most of

the jobs are missing their deadline and the performance of

the three schedulers becomes very similar. The jobs that are

missing their deadlines start requiring the maximum number

of map/reduce slots from the scheduler, and therefore all

the three schedulers start behaving more and more like

the EDF scheduler. At medium loads (inter-arrival times ≥

300s), we see significantly better results under MinEDF and

MinEDF-WC schedulers as compared to EDF with respect

to two major metrics: lower relative deadline exceeded and

very low percentages of jobs with missed deadlines (see

Figure 3). The MinEDF-WC scheduler is able to support

the smallest fraction of jobs missing their deadlines: it

accurately tailors required resources per job and intelligently

allocates and de-allocates spare resources in the cluster

to significantly improve the quality of resource allocation

decisions and to maximize the number of jobs meeting
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Figure 3. Comparing different metrics for 1000 jobs of Testbed workload, averaged over 100 runs. Deadline = [2 · TJ , 4 · TJ ].
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Figure 4. Comparing different metrics for 1000 jobs of Testbed workload,
averaged over 100 runs. Deadline = [2 · TJ , 4 · TJ ].

their deadlines. Figures 3 and 4 with simulated testbed

workload show similar trends to the Facebook workload.

In summary, the MinEDF-WC scheduler (that integrates all

three mechanisms) shows superior performance compared to

EDF and MinEDF schedulers.

D. Validating Simulation Results with Testbed Execution

We validate the testbed workload simulation results by

executing this workload in our 66-node cluster under three

different schedulers (with a chosen inter arrival time for

this validation). Table II reports the metrics collected from

the testbed executions and corresponding simulations (see

values in parentheses). We observe that all the simulation

metrics are close to metrics collected by running these

applications on the 66-nodes Hadoop cluster (metrics from

testbed measurements and metrics from simulations are

within 10% of each other). The MinEDF-WC scheduler that

integrates all three mechanisms for workload management

of jobs with deadlines shows the best performance.

V. RELATED WORK

Scheduling of incoming jobs and the assignment of pro-

cessors to the scheduled jobs has been an important factor

Metrics EDF MinEDF MinEDF-WC

Rel. Deadline Exceeded (%) 82.54 (83.79) 63.77 (69.73) 42.38 (46.87)

Missed-deadline jobs(%) 17 (20) 17 (17) 10 (10)

Avg job completion time (s) 1290 (1360) 1090 (1110) 1200 (1240)

# of extra map tasks NA NA 324 (336)

# of extra reduce tasks NA NA 81 (89)

# of map tasks killed NA NA 3.78 (3.94)

Table II
Metrics collected from running applications on Testbed. Values in

parentheses show the corresponding metric measured in the simulation.

for optimizing the performance of parallel and distributed

systems. It has been studied extensively in scheduling theory

(see a variety of papers and textbooks on the topic [6], [9]–

[16]. Designing an efficient distributed server system often

assumes choosing the “best” task assignment policy for a

given model and user requirements. However, the question

of “best” job scheduling or task assignment policy is still

open for many models. Typically, the choice of the algorithm

is driven by performance objectives.

Job scheduling and workload management in MapReduce

environments is a new topic, but it has already received much

attention. Originally, MapReduce (and its open source im-

plementation Hadoop) was designed for periodically running

large batch workloads with a FIFO scheduler. As the number

of users sharing the same MapReduce cluster increased,

a new Capacity scheduler [4] was introduced to support

more efficient cluster sharing. Capacity scheduler partitions

the resources into pools and provides separate queues and

priorities for each pool. In order to maintain fairness between

different users, the Hadoop Fair Scheduler (HFS) [5] was

proposed. It allocates equal shares to each of the users

running the MapReduce jobs, and also tries to maximize data

locality by delaying the scheduling of the task, if no local

data is available. While both HFS and Capacity scheduler

allow sharing of the cluster among multiple users and their

applications, these schedulers do not provide any special

support for achieving the application performance goals and

the service level objectives (SLOs).

FLEX [2] extends HFS by proposing a special slot allo-

cation schema that aims to optimize explicitly some given

scheduling metric. FLEX relies on the speedup function of

the job (for map and reduce stages) that produces the job

execution time as a function of the allocated slots. This

function aims to represent the application model, but it is not

clear how to derive this function for different applications

and for different sizes of input datasets. FLEX does not pro-

vide a technique for job profiling and detailed MapReduce



performance model, but instead uses a set of simplifying

assumptions about the job execution, tasks durations and job

progress over time. The authors do not offer a case study to

evaluate the accuracy of the proposed approach and models

in achieving the targeted job deadlines.

Morton et al. [17] propose ParaTimer for estimating the

progress of parallel queries expressed as Pig scripts that can

translate into directed acyclic graphs (DAGs) of MapReduce

jobs. Instead of detailed job profiling that is designed in our

work, the authors rely on earlier debug runs of the query

for estimating throughput of map and reduce stages on the

user input data samples. The approach relies on a simplistic

assumption that map (reduce) tasks of the same job have

the same duration. It is not clear how the authors measure

the duration of reduce tasks (what phases of the reduce

task are included in the measured duration), especially since

the reduce task durations of the first wave and later waves

are very different. Usage of the FIFO scheduler limits the

approach applicability for progress estimation of multiple

jobs running in the cluster with a different Hadoop scheduler.

Moseley et al. [18] formalize MapReduce scheduling as

a generalized version of the classical two-stage flexible

flow-shop problem with identical machines. They provide

approximate algorithms for minimizing the makespan of a

set of MapReduce jobs in the offline and online scheduling

scenarios.

Polo et al. [3] introduce an online job completion time

estimator which can be used for adjusting the resource

allocations of different jobs. However, their estimator tracks

the progress of the map stage alone and has no information

or control over the reduce stage.

All earlier approaches do not support deadline-based ob-

jectives for MapReduce environments, and are quite different

from the framework proposed and evaluated in our work.

VI. CONCLUSION

Design of new schedulers and scheduling policies for

MapReduce environments has been an active research topic

in industry and academia during the last years. Most of

these efforts were driven by the user specific goals and

resource utilization management. In this work, we introduce

three complementary mechanisms that enhance workload

management decisions for processing MapReduce jobs with

deadlines. Two of them utilize the novel modeling technique

that is based on accurate job profiling and new performance

models for tailored resource allocations in MapReduce en-

vironments. We analyze the functionality and performance

benefits of each mechanism and implement a novel deadline-

based Hadoop scheduler that integrates all the three mecha-

nisms. In our extensive simulation study and testbed exper-

iments, we demonstrate significant improvements in quality

of job scheduling decisions and completion time guarantees

provided by the new scheduler.

In the study, we only consider MapReduce jobs with

completion time goals. One may ask, how to incorporate

“regular” job processing that does not impose job deadlines,

or how to enforce other useful policies such as job priorities,

or special policies for allocated extra resources among the

particular jobs, etc. We believe that the proposed framework

is easily extensible to handle different classes of MapRe-

duce jobs with logically partitioned (or prioritized) cluster

resources among them.
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