
Three Pieces of the MapReduce Workload Management Puzzle∗

Abhishek Verma

University of Illinois

at Urbana-Champaign

verma7@illinois.edu

Ludmila Cherkasova

Hewlett-Packard Labs,

Palo Alto

lucy.cherkasova@hp.com

Vijay S. Kumar

Hewlett-Packard Labs,

Palo Alto

vijay.s.kumar@hp.com

Roy H. Campbell

University of Illinois

at Urbana-Champaign

rhc@illinois.edu

1 Problem Definition

MapReduce paradigm has become the compelling
choice for performing advanced analytics over un-
structured information and enabling efficient “Big
Data” processing. There is an increasing number
of MapReduce applications, e.g., personalized adver-
tising, sentiment analysis, spam detection, real-time
event log analysis, etc., that require completion time
guarantees and are deadline-driven. In an enter-
prise setting, users share Hadoop clusters and benefit
from processing a diverse variety of applications over
the same or different datasets. None of the existing
Hadoop schedulers support completion time guaran-
tees. Given a MapReduce workload consisting of di-
verse jobs with deadlines, how do we schedule them in
order to meet these service level objectives (SLOs)?

2 Three Pieces of the Puzzle

Many production jobs are run periodically on new
data. We take advantage of this observation, and for
a job that is routinely executed on a new dataset, we
automatically build its job profile that reflects critical
performance characteristics of the underlying appli-
cation during all the execution phases: map, shuffle,
sort, and reduce phases. Our profiling technique [1]
does not require any modifications or instrumenta-
tion of either the application or of the underlying
Hadoop execution engine. All this information can
be obtained from the counters at the job master dur-
ing the job’s execution or parsed from the logs.

Using the knowledge about the job profiles, we de-
sign a set of MapReduce performance models with
complementary functionality: i) for a given job, we
can estimate the job completion time as a function
of allocated resources, and ii) for a given job with a
specified soft deadline (job’s SLO), we can estimate
the amount of map and reduce slots required for com-
pleting the job within the deadline.

∗R. Campbell and A. Verma are supported in part by
NSF CCF grants #0964471, IIS #0841765 and Air Force
Research grant FA8750-11-2-0084.

In this work, we introduce and analyze a set of com-
plementary mechanisms that enhance workload man-
agement decisions for processing MapReduce jobs
with deadlines. The three pieces of the MapReduce
workload management puzzle are as follows:

1) An ordering policy for the jobs in the processing
queue. For example, even if no profiling information
is available about the arriving MapReduce jobs, one
can utilize the job deadlines for ordering. The job
ordering based on the EDF policy (Earliest Deadline
First) was successfully used in real-time processing.
The EDF job ordering might be used with a default
resource allocation policy in Hadoop, where the max-
imum number of available map (or reduce) slots is al-
located to each job at the head of the queue. The pos-
sible drawback of this scheme is that in many cases,
it is impossible to preempt/reassign the already allo-
cated resources to a newly arrived job with an earlier
deadline without killing the running tasks.

2) A mechanism for allocating a tailored number of
map and reduce slots to each job for supporting the
job completion goals. If the job profiling information
is available, then our resource allocation policy can
be much more precise and intelligent: for each job
with a specified deadline, we can estimate and allo-
cate the appropriate number of map and reduce slots
required for completing the job within the deadline.
The interesting feature of this mechanism is that as
the time progresses and the job deadline gets closer,
the introduced mechanism can recompute the amount
of resources needed by each job to meet its deadline.

3) A mechanism for allocating and deallocating (if
necessary) spare resources in the system among the
active jobs. Assume that a cluster has spare re-
sources, i.e., unallocated map and reduce slots left
after each job was assigned its minimum resource
quota for meeting a given deadline. It would be
beneficial to design a mechanism that allocates these
spare resources among the running jobs to improve
the Hadoop cluster utilization and its performance.
The main challenge in designing such a mechanism
is accurate decision making on how the slots in the

1

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1000 10000

%
 R

el
at

iv
e

de
ad

lin
e

ex
ce

ed
ed

Mean inter-arrival time (in seconds)

EDF
MinEDF

MinEDF-WC

 0

 10

 20

 30

 40

 50

 60

 70

 1000 10000

%
 o

f m
is

se
d

jo
bs

Mean inter-arrival time (in seconds)

EDF
MinEDF

MinEDF-WC

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 1000 10000

A
ve

ra
ge

 jo
b

co
m

pl
et

io
n

tim
e

(in
 s

ec
on

ds
)

Mean inter-arrival time (in seconds)

EDF
MinEDF

MinEDF-WC

Figure 1: Comparing different metrics for 1000 job workload, averaged over 100 runs. Deadline = [2·TJ , 4·TJ].

cluster should be re-allocated or de-allocated to the
newly-arrived job with an earlier deadline. The näıve,
straightforward approach could de-allocate the spare
resources by canceling their running tasks, and then
by re-allocating these slots to the new job. However,
it may lead to undesirable churn in resource alloca-
tion and unproductive usage of cluster resources.

We introduce a novel mechanism that enables a
scheduler to accurately predict whether the cluster
will have a sufficient amount of released resources
over time for the new job to be completed within
its deadline. The mechanism exploits the job pro-
file information for making the prediction. It uses a
novel modeling technique to avoid canceling the cur-
rently running tasks if possible. The mechanism de-
allocates the spare slots (i.e., cancels the execution
of extra tasks above the minimum resource quota for
each job) only when the amount of released resources
over time does not guarantee a timely completion of
the newly arrived job.

3 Work-in-Progress

We have implemented a novel deadline-based Hadoop
scheduler that integrates all the three mechanisms.
We analyze the functionality and performance bene-
fits of each mechanism via an extensive set of sim-
ulations over diverse workload sets. The analysis
presents a set of performance metrics that reflect the
quality of job scheduling and slot allocation decisions
provided by these different mechanisms. The solu-
tion that integrates all the three mechanisms is a
clear winner in providing the most efficient support
for serving MapReduce jobs with deadlines.

We analyze these mechanisms and their perfor-
mance with our simulation environment SimMR [2].
We use a mix of six different applications: Word-
Count, Sort, Bayesian classifier, Term Frequency - In-
verse Document Frequency (TF-IDF), Twitter Asym-
metry and WikiTrends with three different dataset
sizes. We run these 18 jobs applications with three
different datasets in our 66-nodes Hadoop testbed,
and create the replayable job traces for SimMR. We
generate an equally probable random permutation of
arrival of these jobs and assume that the inter-arrival
time of the jobs is exponential.

Figure 1 shows the simulation results for processing
1000 jobs (consisting of multiple permutations of the
18 jobs described above) under the EDF, MinEDF,
and MinEDF-WC schedulers and the deadlines be-
ing generated uniformly in the interval [2 · TJ , 4 · TJ].
The results are averaged over 100 runs. These simu-
lation results reflect our scheduler’s performance over
a broader range of loads in the cluster. At very
high loads, the cluster is under significant overload,
most of the jobs miss their deadline and the perfor-
mance of the three schedulers becomes very similar.
At medium loads (inter-arrival times ≥ 300s), we
see significantly better results under MinEDF and
MinEDF-WC schedulers as compared to EDF with
respect to two major metrics: lower relative dead-
line exceeded and very low percentages of jobs with
missed deadlines. The MinEDF-WC scheduler is able
to support the smallest fraction of jobs missing their
deadlines: it accurately tailors required resources per
job and intelligently allocates and de-allocates spare
resources in the cluster to significantly improve the
quality of resource allocation decisions and to maxi-
mize the number of jobs meeting their deadlines.

The impact of this mechanism can be also observed
in Figure 1 that reflects the most improved average
completion time under the work-conserving nature of
MinEDF-WC scheduler. Since MinEDF does not uti-
lize spare resources and only allocates the minimum
resource quota required for job completion within the
deadline, the average job completion time does not
improve under MinEDF even as the load decreases.

We observe similar simulation results with a work-
load trace from Facebook. This leads us to believe
in the generality of presented conclusions. We vali-
dated these results through experiments on our 66-
node Hadoop cluster. We observe that metrics from
testbed measurements and metrics from simulations
are within 10% of each other.
References

[1] A. Verma, L. Cherkasova, and R. H. Campbell,
“ARIA: Automatic Resource Inference and Allocation
for MapReduce Environments,” in Proc. of ICAC.
ACM/IEEE, 2011.

[2] ——, “Play It Again, SimMR!” in Proc. of Intl. IEEE

Cluster 2011. Austin, TX, USA, 2011.

2

