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Abstract Data-intensive computing has emerged as a key player for processing large
volumes of data exploiting massive parallelism. Data-intensive computing frame-
works have shown that terabytes and petabytes of data can be routinely processed.
However, there has been little effort to explore how data-intensive computing can
help scale evolutionary computation. In this book chapter we explore how evolu-
tionary computation algorithms can be modeled using two different data-intensive
frameworks—Yahoo!’s Hadoop and NCSA’s Meandre. We present a detailed step-by-
step description of how three different evolutionary computation algorithms, having
different execution profiles, can be translated into the data-intensive computing
paradigms. Results show that (1) Hadoop is an excellent choice to push evolutionary
computation boundaries on very large problems, and (2) that transparent Meandre
linear speedups are possible without changing the underlying data-intensive flow
thanks to its inherent parallel processing.
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1 Introduction

Data-intensive computing branding is relatively recent, however data flow started to
get traction back in the mid 90’s with the appearance of frameworks such as IBM
promoted FBP[32] or NCSA’s D2K [44], and later simplified and popularized by
Google’s MapReduce model [10] and Yahoo!’s open source Hadoop project1. Recent
advances on data-intensive computing have lead to frameworks that are now able to
exploit massive parallelism to efficiently process petabytes of data. These frameworks,
due to their data-flow nature, provide specialized programming environments tailored
for developing flow applications that, up to a certain degree, transparently benefit
from the available parallelism.

The current data deluge is happening across different domains and is forcing a
rethinking of how large volumes of data are processed. Most of these data-intensive
computing frameworks share a common underlying characteristic: data-flow oriented
processing. Availability of data drives, not only the execution, but also the parallel
nature of such processing. The growth of the internet and its easy communication
medium has pushed researchers from all disciplines to deal with volumes of informa-
tion where the only viable path is to utilize data-intensive frameworks [42, 6, 13, 31].
Although large bodies of research on parallelizing evolutionary computation algo-
rithms are available [8, 1], there has been little work done in exploring the usage of
data-intensive computing [22, 27].

The inherent parallel nature of evolutionary algorithms makes them optimal can-
didates for parallelization [8]. Moreover, as we will layout in this paper, evolutionary
algorithms and their inherent need to deal with large volumes of data—regardless
if it takes the form of populations of individuals or samples out of a probabilistic
distribution—can greatly benefit from a data-intensive computing modeling. In this
book chapter we will explore the usage of two frameworks: Yahoo!’s Hadoop model
and its MapReduce implementation, and NCSA’s semantic-driven data-intensive
computing framework – Meandre2 [29]. Hadoop provides a simple scalable pro-
gramming model based on the implementation of two basic functions: the map and
the reduce functions. The map function provides uniform and parallel process to
large volumes of data in forms of chunks, whereas the reduce function aggregates
the results produced by mappers. On the other hand, Meandre allows explicit de-
scriptions of complex, and possibly iterating, data flows via a directed multigraph
of components describing the data flow processing. Two main benefits of such a
modeling are: (1) favoring encapsulation, reutilization, and sharing via Lego-like
component modeling, and (2) massive parallel data-driven execution. The first benefit
targets improving software engineering best practices and a detailed discussion is
beyond the scope of this paper and can be find elsewhere [29].

To illustrate the benefits for the evolutionary computation community of adopting
such approaches we selected three representative algorithms and developed their
equivalent data-intensive computing equivalents. It is important to note here that

1 http://hadoop.apache.org/
2 Catalan spelling of the word meander. http://seasr.org/meandre

http://hadoop.apache.org/
http://seasr.org/meandre
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we paid special attention to guarantee that the underlaying mechanics were not
altered and the properties of these algorithms maintained. The three algorithms
transformed were: a simple selectorecombinative genetic algorithm [15, 16], the
compact genetic algorithm [20], and the extended compact genetic algorithm [21].
We will show how a simple selectorecombinative genetic algorithm [15, 16] can be
modeled using the data-intensive computing via Hadoop’s MapReduce approach
and Meandre data-intensive flow modeling. We will review (1) some of the basic
steps of the transformation process required to achieve its data-intensive computing
counterparts, (2) how to design components that can maximally benefit from a data-
driven execution, and (3) analyze the results obtained. The second example, the
compact genetic algorithm [20], we focus on how Hadoop’s MapReduce modeling
can help scale being a clear competitor of traditional high performance computing
version [40]. The third example addresses the parallelization of the model building
of estimation of distribution algorithms. We will show how Meandre’s data-driven
implementation of the extended compact classifier system (eCGA) [21] produces, de
facto, a parallelized implementation of the costly model building stage. Experiments
show that speedups linear to the number of cores or processors are possible without
any further modification.

It is important to note here, that each of these algorithms has different profiles.
For instance, the simple selectorecombinative genetic algorithm requires dealing
with large populations as you tackle large problems, but the operators are straight
forward. The compact genetic algorithm instead is memory efficient, but requires the
proper updating of a simple probability distributions. Finally the extended compact
genetic algorithms requires to deal with large populations as you scale your problem
size, and also requires an elaborated model building process to induce the probability
distribution required. In this book chapter, we will focus on the massive parallel
data-driven execution that allows users to automatically benefit from the advances of
the current multicore era — which has opened the door to petascale computing —
without having to modify the underlying algorithm.

The rest of this chapter is organized as follows. Section 2 presents a quick in-
troductory overview of the two data-intensive frameworks we will use through the
chapter, Hadoop and Meandre. Then, Section 3 introduces the three evolutionary
computation algorithms that we will use in our experimentation with the two intro-
duced frameworks, a simple selectorecombinative genetic algorithm , the compact
genetic algorithm, and the extended compact genetic algorithm. These algorithms are
transformed and implemented using data-intensive computing techniques, and the
proposed implementations are discussed on Section 4. Section 5 presents the results
achieved and using the data-intensive implementations showing that scalability is
only bounded by the available resources, and linear speedups are easily achievable.
Finally we review some related work in section 6 and present some conclusions and
possible further work on section 7.
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2 Data-Intensive Computing

This section presents a quick overview of the two data-intensive frameworks we will
use throughout the rest of this book chapter. The first one is Hadoop3 — Yahoo!’s
open source MapReduce framework. Modeled after Google’s MapReduce paper [10],
Hadoop builds on the map and reduce primitives present in functional languages.
Hadoop relies on these two abstractions to enable the easily development of large-
scale distributed applications as long as your application can be modeled around
these two phases. The second framework is Meandre [29]—NCSA’s data-intensive
computing infrastructure for science, engineering, and humanities. Meandre provides
a more flexible programming model that allows to create complex data flows, which
could be regarded as complex and possible iterating MapReduce stages. Meandre
can also benefit of some Hadoop tools, such as Hadoop’s distributed file system.

2.1 MapReduce and The Hadoop Model

Inspired by the map and reduce primitives present in functional languages, Google
popularized the MapReduce[10] abstraction that enables users to easily develop
large-scale distributed applications. The associated implementation parallelizes large
computations easily as each map function invocation is independent and uses re-
execution as the primary mechanism of fault tolerance.

In this model, the computation takes a set of input key/value pairs, and produces
a set of output key/value pairs. The user of the MapReduce library expresses the
computation as two functions: Map and Reduce. Map, written by the user, takes
an input pair and produces a set of intermediate key/value pairs. The MapReduce
framework then groups together all intermediate values associated with the same
intermediate key I and passes them to the Reduce function. The Reduce function,
also written by the user, accepts an intermediate key I and a set of values for that
key. It merges together these values to form a possibly smaller set of values. The
intermediate values are supplied to the user’s reduce function via an iterator. This
allows the model to handle lists of values that are too large to fit in main memory.

Conceptually, the map and reduce functions supplied by the user have the follow-
ing types:

map(k1,v1)→ list(k2,v2)
reduce(k2, list(v2))→ list(v3)

i.e., the input keys and values are drawn from a different domain than the output keys
and values. Furthermore, the intermediate keys and values are from the same domain
as the output keys and values.

3 http://hadoop.apache.org

http://hadoop.apache.org
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Fig. 1 MapReduce data flow overview

The Map invocations are distributed across multiple machines by automatically
partitioning the input data into a set of M splits. The input splits can be processed
in parallel by different machines. Reduce invocations are distributed by partitioning
the intermediate key space into R pieces using a partitioning function, which is
hash(key)%R according to the default Hadoop configuration. The number of parti-
tions (R) and the partitioning function are specified by the user. The overall execution
is thus orchestrated in two steps: first all mappers are executed in parallel, then the
reducers process the generated key value pairs by the reducers. A detailed explanation
of this framework is beyond the scope of this article and can be found elsewhere
[10]. We will also use the Yahoo!’s open source MapReduce framework through this
article.

2.2 Data-Intensive Flow Computing with Meandre

Meandre [29] is a semantic-enabled web-driven, dataflow execution environment. It
provides the machinery for assembling and executing data flows. Flows are software
applications composed by components that process data. Each flow represents as a
directed multigraph of executable components—nodes—linked through their input
and output ports. Based on the inputs, properties, and its internal state, an executable
component may produce output data. Meandre also provides component and flow
publishing capabilities enabling users to assemble a repository of components by
reusing and sharing. Users can discover by querying and reuse components and
flows previously published by other researchers. It is important to mention here, that
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component and flow abstract can act as self-contained elements—other approaches
like Chimera still rely on external information [13]. Meandre builds on three main
concepts: (1) dataflow-driven execution, (2) semantic-web metadata manipulation,
and (3) metadata publishing. A detailed description of the Meandre data-intensive
computing architecture is beyond the scope of this paper and can be found elsewhere
[29].

Component 

P 

Inputs  Outputs 

Behavior descriptor  Implementa7on 

(a) A component is described by several input
and output ports where data flows through. Also,
each component have a set of properties which
govern its behavior in the presence of data.

Read 
P  Merge 

P 

Convert 
P 

Show 
P 

Get 
P 

Dataflow execution 

(b) A flow is a directed graph where multi-
ple components are connected together via in-
put/output ports. A flow represents a complex
task to solve.

Fig. 2 A data-intensive flow is characterized by the components it uses (basic process units) and
their interconnection (a direct multigraph). Grouping several components together describes a
complex task. It also emphasize rapid development by component reutilization.

2.2.1 Dataflow Execution Engines

Conventional programs perform their computational tasks by executing a sequence
of instructions. One after another, each code instruction is fetched and executed.
All data manipulation is performed by these basic units of execution. In a broad
sense, this approach can be termed “code-driven execution.” Any computation task
is regarded as a sequence of code instructions that ultimately manipulates data.
However, data-driven execution (or dataflow execution) revolves around the idea of
applying transformational operations to a flow or stream of data. In a data-driven
model, data availability determines the sequence of code instructions to execute.

An analogy of the dataflow execution model is the black box operand approach.
That is, any operand (operator) may have zero or more data inputs. It may also
produce zero or more data through its data outputs. The operand behavior may be
controlled by properties (behavior controls). Each operand performs its operations
based on the availability of its inputs. For instance, an operand may require that data
is available in all its inputs to perform its operations. Others may only need some, or
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none. A simple example of a black box operand could be the arithmetic ‘+’ operand.
This operand can be modeled as follows:

1. It requires two inputs.
2. When two inputs are available, it performs the addition.
3. It then pushes the result to an output.

Such a simple operand may have two possible implementations. The first one
defines a executable component (Meandre terminology for a black box operator) with
two inputs. When data is present on both inputs, then the operator is executed—fired.
The operator produces one piece of data to output, which may become the input of
another operator. Another possible implementation is to create a component with a
single input that adds together two consecutive data pieces received. The component
requires an internal variable (or state) which stores the first data piece of a pair. When
the second data piece arrives, it would be added to the first and an output is produced.
The internal variable would then be cleared and the component will treat the next
data piece received as the first of a new pair. As we will see later in this paper, both
implementations have merit, but in certain conditions we will choose one over the
other based on clarity and efficiency requirements.

Meandre uses the following terminology:

1. Executable component: A basic unit of processing.
2. Input port: Input data required by a component.
3. Firing policy: The policy of component execution (e.g. when all/any input ports

contain data).
4. Output port: Outputs data produced by component execution.
5. Properties: Component read-only variables used to modify component behavior.
6. Internal state: The collection of data structures designed to manage data between

component firings.

Figure 2 presents a schema of the component and flow anatomy. Components
with input and output ports can be connected to describe a complex task, commonly
referred as flow. Dataflow execution engines provide a scheduler that determines the
firing (execution) sequence of components4.

2.2.2 Components

Meandre components serve as the basic building block of any computational task.
There are two kinds of Meandre components: (1) executable components and (2)
flow components. Regardless of type, all Meandre components are described using
metadata expressed in RDF. Executable components also require an executable
implementation form that can be understood by the Meandre execution engine5.

4 Meandre uses a decentralized scheduling policy designed to maximize the use of multicore
architectures. Meandre also allows works with processes that require directed cyclic graphs—
extending beyond the traditional MapReduce directed acyclic graphs.
5 Java, Python, and Lisp are the current languages supported by Meandre to implement a component.
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Meandre’s metadata relies on three ontologies: (1) the RDF ontology [5, 7] serves as
a base for defining Meandre components; (2) the Dublin Core elements ontology [43]
provides basic publishing and descriptive capabilities in the description of Meandre
components; and (3) the Meandre ontology describes a set of relationships that model
valid components, as understood by the Meandre architecture—refer to [29] for a
more detailed description.

2.2.3 Programming Paradigm

The programming paradigm creates complex tasks by linking together a bunch of
specialized components—see Figure 2. Meandre’s publishing mechanism allows
components developed by third parties to be assembled in a new flow. There are two
ways to develop flows on Meandre: (1) using visual programming tools, or (2) using
Meandre’s ZigZag scripting language—see [29]. For simplicity purposes, throughout
the rest of this paper flows will be presented as ZigZag scripts.

3 Three Diverse Genetic Algorithms Models

Evolutionary computing encompass a large diversity of algorithms and implemen-
tations. In order to illustrate the usefulness of data-intensive computing, we will
focus on three widely used models: selectorecombinative genetic algorithms [15, 16],
the compact genetic algorithm [20], and the extended compact genetic algorithm
[21]. As we will describe in the rest of this section, each of these algorithms posses
different profiles. Ranging from purely population-based to model-based algorithms,
to create their data-intensive computing counterparts—as we will show in the next
section—will require to pay close attention to their basic needs.

3.1 A Simple Selectorecombinative Genetic Algorithm

Selectorecombinative genetic algorithms [15, 16] mainly rely on the use of selection
and recombination. We chose to start with them because they present a minimal set of
operators that will help us illustrate the creation of a data-intensive flow counterpart.
As we will see, the addition of mutation operators will be trivial after the setting up
the proper data-intensive flow. The rest of this section will present a quick description
of the algorithm we transformed and implemented it using Meandre, a discussion
of some of the elements that need to be taken into account, and finally review the
execution profile of the final implementation.

The basic algorithm we will target to implement as a data-intensive flow can be
summarized as follows:

1. Initialize the population with random individuals.
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2. Evaluate the fitness value of the individuals.
3. Select good solutions by using s-wise tournament selection without replacement

[18].
4. Create new individuals by recombining the selected population using uniform

crossover6[41].
5. Evaluate the fitness value of all offspring.
6. Repeat steps 3–5 until some convergence criteria are met.

3.2 The Compact Genetic Algorithm

The compact genetic algorithm [20], is one of the simplest estimation distribution al-
gorithms (EDAs) [35, 23]. Similar to other EDAs, cGA replaces traditional variation
operators of genetic algorithms by building a probabilistic model of promising solu-
tions and sampling the model to generate new candidate solutions. The probabilistic
model used to represent the population is a vector of probabilities, and therefore
implicitly assumes each gene (or variable) to be independent of the other. Specifically,
each element in the vector represents the proportion of ones (and consequently zeros)
in each gene position. The probability vectors are used to guide further search by
generating new candidate solutions variable by variable according to the frequency
values.

The compact genetic algorithm consists of the following steps:

1. Initialization: As in simple GAs, where the population is usually initialized
with random individuals, in cGA we start with a probability vector where the
probabilities are initially set to 0.5. However, other initialization procedures can
also be used in a straightforward manner.

2. Model sampling: We generate two candidate solutions by sampling the probability
vector. The model sampling procedure is equivalent to uniform crossover in simple
GAs.

3. Evaluation: The fitness or the quality-measure of the individuals are computed.
4. Selection: Like traditional genetic algorithms, cGA is a selectionist scheme, be-

cause only the better individual is permitted to influence the subsequent generation
of candidate solutions. The key idea is that a “survival-of-the-fittest” mechanism
is used to bias the generation of new individuals. We usually use tournament
selection [18] in cGA.

5. Probabilistic model update: After selection, the proportion of winning alleles is
increased by 1/n. Note that only the probabilities of those genes that are different
between the two competitors are updated. That is,

pt+1
xi

=


pt

xi
+1/n If xw,i 6= xc,i and xw,i = 1,

pt
xi
−1/n If xw,i 6= xc,i and xw,i = 0,

pt
xi

Otherwise.
(1)

6 For this particular exercise we have assumed a crossover probability pχ =1.0.
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Where, xw,i is the ith gene of the winning chromosome, xc,i is the ith gene of
the competing chromosome, and pt

xi
is the ith element of the probability vector—

representing the proportion of ith gene being one—at generation t. This updating
procedure of cGA is equivalent to the behavior of a GA with a population size of
n and steady-state binary tournament selection.

6. Repeat steps 2–5 until one or more termination criteria are met.

The probabilistic model of cGA is similar to those used in population-based
incremental learning (PBIL) [3, 4] and the univariate marginal distribution algorithm
(UMDA) [34, 33]. However, unlike PBIL and UMDA, cGA can simulate a genetic
algorithm with a given population size. That is, unlike the PBIL and UMDA, cGA
modifies the probability vector so that there is direct correspondence between the
population that is represented by the probability vector and the probability vector
itself. Instead of shifting the vector components proportionally to the distance from
either 0 or 1, each component of the vector is updated by shifting its value by
the contribution of a single individual to the total frequency assuming a particular
population size.

Additionally, cGA significantly reduces the memory requirements when compared
with simple genetic algorithms and PBIL. While the simple GA needs to store n bits,
cGA only needs to keep the proportion of ones, a finite set of n numbers that can be
stored in log2 n for each of the ` gene positions. With PBIL’s update rule, an element
of the probability vector can have any arbitrary precision, and the number of values
that can be stored in an element of the vector is not finite.

Elsewhere, it has been shown that cGA is operationally equivalent to the order-
one behavior of simple genetic algorithm with steady state selection and uniform
crossover [20]. Therefore, the theory of simple genetic algorithms can be directly
used in order to estimate the parameters and behavior of the cGA. For determining
the parameter n that is used in the update rule, we can use an approximate form of
the gambler’s ruin population-sizing7 model proposed by Harik et al. [19]:

n =−logα · σBB

d
·2k−1√

π ·m, (2)

where k is the BB size, m is the number of building blocks (BBs)—note that the
problem size ` = k ·m,—d is the size signal between the competing BBs, and σBB is
the fitness variance of a building block, and α is the failure probability.

3.3 The Extended Compact Genetic Algorithm

The extended compact genetic algorithm (eCGA) [21], is based on a key idea that
the choice of a good probability distribution is equivalent to linkage learning. The
measure of a good distribution is quantified based on minimum description length
(MDL) models. The key concept behind MDL models is that given all things are equal,

7 The experiments conducted in this paper used n = 3`.
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simpler distributions are better than the complex ones. The MDL restriction penalizes
both inaccurate and complex models, thereby leading to an optimal probability
distribution. The probability distribution used in eCGA is a class of probability
models known as marginal product models (MPMs). MPMs are formed as a product
of marginal distributions on a partition of the genes. MPMs also facilitate a direct
linkage map with each partition separating tightly linked genes.

The eCGA, later extended to deal with n-ary alphabets in χ-eCGA [?], can be
algorithmically outlined as follows:

1. Initialize the population with random individuals.
2. Evaluate the fitness value of the individuals.
3. Select good solutions by using s-wise tournament selection without replacement

[18].
4. Build the probabilistic model: In χ-eCGA, both the structure of the model as well

as the parameters of the models are searched. A greedy search is used to search
for the model of the selected individuals in the population.

5. Create new individuals by sampling the probabilistic model.
6. Evaluate the fitness value of all offspring.
7. Repeat steps 3–6 until some convergence criteria are met.

Two things need further explanation: (1) the identification of MPM using MDL, and
(2) the creation of a new population based on MPM.

The identification of MPM in every generation is formulated as a constrained
optimization problem,

Minimize Cm +Cp (3)
Subject to

χ
ki ≤ n ∀i ∈ [1,m] (4)

where χ is the alphabet cardinality—χ = 2 for the binary strings—Cm is the model
complexity which represents the cost of a complex model and is given by

Cm = logχ(n+1)
m

∑
i=1

(
χ

ki −1
)

(5)

and Cp is the compressed population complexity which represents the cost of using a
simple model as against a complex one and is evaluated as

Cp =
m

∑
i=1

χki

∑
j=1

Ni j logχ

(
n

Ni j

)
(6)

where m in the equations represent the number of BBs, ki is the length of BB
i∈ [1,m], and Ni j is the number of chromosomes in the current population possessing
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bit-sequence j ∈ [1,χki ]8 for BB i. The constraint (Equation 4) arises due to finite
population size.

The greedy search heuristic used in χ-eCGA starts with a simplest model assuming
all the variables to be independent and sequentially merges subsets until the MDL
metric no longer improves. Once the model is built and the marginal probabilities
are computed, a new population is generated based on the optimal MPM as follows,
population of size n(1− pc) where pc is the crossover probability, is filled by the
best individuals in the current population. The rest n · pc individuals are generated by
randomly choosing subsets from the current individuals according to the probabilities
of the subsets as calculated in the model.

One of the critical parameters that determines the success of eCGA is the popula-
tion size. Analytical models have been developed for predicting the population-sizing
and the scalability of eCGA [39]. The models predict that the population size required
to solve a problem with m building blocks of size k with a failure rate of α = 1/m is
given by

n ∝ χ
k
(

σ2
BB

d2

)
m logm, (7)

where n is the population size, χ is the alphabet cardinality (here, χ = 3), k is the

building block size, σ2
BB

d2 is the noise-to-signal ratio [17], and m is the number of
building blocks. For the experiments presented in this paper we used k = |a|+ 1

(where |a| is the number of address inputs), σ2
BB

d2 =1.5, and m = `
|I| (where ` is the rule

size).

4 Data-Intensive Computing in Action

The previous section described the three algorithms we will target to create their
data-intensive computing counterparts. This section we will take a stab at designing
efficient and scalable version of these algorithms to show the benefits of banking on
either MapReduce or Meandre approaches.

4.1 A Simple Selectorecombinative Genetic Algorithm

4.1.1 MapReducing SGAs

In this section, we start with a simple model of Genetic algorithms and then transform
and implement it using MapReduce. We encapsulate each iteration of the GA as a

8 Note that a BB of length k has χk possible sequences where the first sequence denotes be 00· · ·0
and the last sequence (χ−1)(χ−1) · · ·(χ−1)
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Listing 1 Map phase of each iteration of the Genetic Algorithm

procedure I n i t i a l i z a t i o n :
begin

max := −1
end

procedure Map ( key , v a l u e ) :
begin

i n d i v i d u a l := I n d i v i d u a l r e p r e s e n t a t i o n ( key )
f i t n e s s := C a l c u l a t e F i t n e s s ( i n d i v i d u a l )
Emit ( i n d i v i d u a l , f i t n e s s )
{Keep t r a c k o f t h e c u r r e n t b e s t }

i f f i t n e s s >max then
max := f i t n e s s
maxInd := i n d i v i d u a l

{F i n i s h e d a l l l o c a l maps}
i f p r o c e s s e d a l l i n d i v i d u a l s then

Write b e s t i n d i v i d u a l to g l o b a l f i l e in DFS
end

seperate MapReduce job. The client accepts the commandline parameters, creates
the population and submits the MapReduce job.

Map Evaluation of the fitness function for the population matches the MAP func-
tion, which has to be computed independent of other instances. As shown in the
algorithm in Listing 1, the MAP evaluates the fitness of the given individual. Also,
it keeps track of the the best individual and finally, writes it to a global file in
the Distributed File System (HDFS)9. The client reads these values from all the
mappers at the end of the MapReduce and determines whether to start the next
iteration.

Partitioner If the selection operation in a GA (Step 3) is performed locally on each
node, it reduces the selection pressure [37] and can lead to increase in the time
taken to converge. Hence, decentralized and distributed selection algorithms [9]
are preferred. The only point at which there is a global communication is in the
shuffle between the Map and Reduce. At the end of the Map phase, the MapReduce
framework shuffles the key/value pairs to the reducers using the partitioner. The
partitioner splits the intermediate key/value pairs among the reducers. The function
GETPARTITION() returns the reducer to which the given (key,value) should be
sent to. In the default implementation, it uses HASH(key) % numReducers so that
all the values corresponding to a given key end up at the same reducer which
can then apply the REDUCE function. However, this does not suit the needs of
Genetic algorithms because of two reasons: Firstly, the HASH function partitions
the namespace of the individuals N into r distinct classes : {N0,N1, . . . ,Nr−1}

9 This cleanup functionality can be implemented by overriding the close() function, but it’s overlaps
with reduce() function and hence sometimes throws FileNotFoundException
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Listing 2 Random partitioner for the Genetic Algorithm

i n t g e t P a r t i t i o n ( key , va lue , numReducers ) :
r e t u r n RandomInt ( 0 , numReducers − 1)

where Ni = {n : HASH(n) = i}. The individuals within each partition are isolated
from all other partitions. Thus, the HASHPARTITIONER introduces an artificial
spatial constraint based on the lower order bits. Because of this, the convergence
of the genetic algorithm may take more iterations or it may never converge at all.
Secondly, as the genetic algorithm progresses, the same (close to optimal) individ-
ual begins to dominate the population. All copies of this individual will be sent to
one single reducers which will get overloaded. Thus, the distribution progressively
becomes more skewed, deviating from the uniform distribution (that would have
maximized the usage of parallel processing). Finally, when the GA converges,
all the individuals will be processed by that single reducer. Thus, the parallelism
decreases as the GA converges and hence, it will take more iterations.
For these reasons, we override the default partitioner by providing our own
partitioner, which shuffles individuals randomly across the different reducers as
shown in Listing 2.

Reducer We implement Tournament selection without replacement[18]. A tourna-
ment is conducted among tSize randomly chosen individuals and the winner is
selected. This process is repeated population number of times. Since randomly
selecting individuals is equivalent to randomly shuffling all individuals and then
processing them sequentially, our reduce function goes through the individuals
sequentially. Initially the individuals are buffered for the last rounds, and when
the tournament window is full, SELECTIONANDCROSSOVER is carried out as
shown in the Listing 3. When the crossover window is full, we use the Uniform
Crossover operator. For our implementation, we set the tSize to 5 and the cSize to
2.

Optimizations After initial experimentation, we noticed that for larger problem
sizes, the serial initialization of the population takes a long time. According to
Amdahl’s law, the speedup is bounded because of this serial component. Hence,
we create the initial population in a separate MapReduce phase, in which the
MAP generates random individuals and the REDUCE is the Identity Reducer. 10

We seed the pseudo-random number generator for each mapper with mapperId ·
currentTime. The bits of the variables in the individual are compactly represented
in an array of long long ints and we use efficient bit operations for crossover and
fitness calculations. Due to the inability of expressing loops in the MapReduce
model, each iteration consisting of a Map and Reduce, has to executed till the
convergence criteria is satisfied.

10 Setting the number of reducers to 0 in Hadoop removes the extra overhead of shuffling and
identity reduction.
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Listing 3 Reduce phase of each iteration of the Genetic Algorithm

procedure I n i t i a l i z a t i o n :
begin

p r o c e s s e d := 0
A l l o c a t e t o u r n a m e n t A r r a y [1 . . . 2∗ t S i z e ]
A l l o c a t e c r o s s o v e r A r r a y [ c S i z e ]

end

procedure Reduce ( key , v a l u e s ) :
begin

whi l e v a l u e s . hasNext ( )
begin

i n d i v i d u a l := I n d i v i d u a l r e p r e s e n t a t i o n ( key )
f i t n e s s := v a l u e s . g e t V a l u e ( )
i f p r o c e s s e d <t S i z e
then
{Wait f o r i n d i v i d u a l s t o j o i n i n t h e t o u r n a m e n t and p u t

them f o r t h e l a s t rounds}
t o u r n a m e n t A r r a y [ t S i z e + p r o c e s s e d%t S i z e ] := i n d i v i d u a l

e l s e
{Conduct a t o u r n a m e n t over t h e p a s t window}

S e l e c t i o n A n d C r o s s o v e r ( )
p r o c e s s e d := p r o c e s s e d + 1

{F i n i s h e d a l l r e d u c e s }
i f p r o c e s s e d a l l i n d i v i d u a l s
then
{Cleanup f o r t h e l a s t t o u r n a m e n t windows}

f o r k=1 to t S i z e
begin

S e l e c t i o n A n d C r o s s o v e r ( )
p r o c e s s e d := p r o c e s s e d + 1

end
end

end

procedure S e l e c t i o n A n d C r o s s o v e r :
begin

c r o s s o v e r A r r a y [ p r o c e s s e d%c S i z e ] := Tournament ( t o u r n a m e n t A r r a y )
i f ( p r o c e s s e d−t S i z e )%c S i z e = c S i z e − 1
then

{Perform c r o s s o v e r whenever t h e c r o s s o v e r window i s f u l l }
n e w I n d i v i d u a l s := C r o s s o v e r ( c r o s s o v e r A r r a y )
f o r i n d i v i d u a l in n e w I n d i v i d u a l s

Emit ( i n d i v i d u a l , dummyFitness )
end
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4.1.2 SGAs as Data-Intensive Flows

The first step in designing a data-intensive flow implementation of the algorithm pre-
sented in the previous section is to identify what data will be processed. This decision
is similar to the partition step of the methodology proposed by Foster [12], to design
general purpose parallel programs, where data is maximally partitioned to maximize
parallelization. The two possible options here are to deal with populations or individ-
uals. E2K [26]—a data-flow extension for D2K [44]—chose to use populations. Such
a decision only allows parallelizing the concurrent evolution of distinct populations.
In this paper we will choose the second option. Our data-flow implementation is
going to be built around processing individuals. In other words, a population will
be a stream of individuals—a stream initiator and a stream terminator will enclose
each stream defining a population. Making the decision of processing streams of
individuals will allow creating components that perform the genetic manipulation
as the stream goes by. This approach may be regarded as an analogy of pipeline
segmentation on central processing units.

Fig. 3 Meandre’s flow for the proposed selectorecombinative genetic algorithm flow.

Inspecting the algorithm presented in section 3.1, we need to create components
that implement each of the operation required: initialization, evaluation, selection,
and recombination. Initialization and evaluation are straight forward; the first one
creates the stream of individuals that forms a population, and the second one updates
the fitness of the individuals as they are streamed by. The recombination components—
as introduced in section 2.2—will require and internal state. As individuals stream
by, it requires two individuals in order to perform the uniform crossover operation.

The selection component requires a bit more thinking. One may think that a similar
implementation to the one used for the recombination component may work approxi-
mately accurate enough. However, such an implementation would be equivalent to
implement a spatial based selection method instead of a tournament one. Spatially
constraint selection methods have been shown to elongate the takeover time, and
thus reduce the selection pressure when compared to tournament selection without
replacement [9, 37, 38, 28, 14]. Also, following on the temptation of accumulate all
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Listing 4 Portion of the ZigZag script implementing a selectorecombinative genetic algorithm
using Meandre components.

#
# Main i m p o r t and a l i a s e s
#

# Omi t t ed . . .

#
# Component i n s t a n c e s
#
sbp , soed , eps = SBP ( ) , SOED ( ) , EPS ( )
n o i t , twrops , ucbps = NOIT ( ) , TWROPS( ) , UCBPS ( )
p r i n t = PRINT ( )
#
# The f l o w
#
@new pop , @cross pop = sbp ( ) , ucbps ( )
@pop ed = soed (

i n i t i a l s t r e a m : new pop . p o p u l a t i o n ;
s t r e a m : c r o s s p o p . p o p u l a t i o n

)
@eval pop = eps ( p o p u l a t i o n : pop ed . s t r e a m )
@sel pop = t wro ps ( p o p u l a t i o n : e v a l p o p . p o p u l a t i o n )
@cnt = n o i t ( p o p u l a t i o n : s e l p o p . p o p u l a t i o n )
ucbps ( p o p u l a t i o n : c n t . p o p u l a t i o n )
p r i n t ( p o p u l a t i o n : c n t . f i n a l p o p u l a t i o n )

the individuals and then recreate the stream as we conduct tournaments against the
accumulated population also seems prone to introduce a large sequential bottleneck
and, thus, leaving the execution profile prone to the Amdahl’s law [2]. The answer
is simpler. Create all the required tournaments when you get the stream initiator.
Then as individuals are streamed in perform the possible tournaments and start
streaming the new selected population. Thus, we will guarantee that as individuals
are still streamed in, we are already streaming out of the component a newly selected
population, minimizing Ambdahl’s law impact.

Figure 3 presents the components discussed above and how they get assembled
to for the final data-intensive flow. The sbp (stream binary population) streams a
population of individuals to start the flow. Individuals get streamed into the soed
(single open entry door) component. This is a special component. Its only goal is
to make sure that all the individuals on the initial population are streamed into the
evaluation eps component before the next streamed population arrives. The goal
of this component is to avoid having individuals from the next population mixed
with the previous population ones. It is important to note here that individuals my
still be streamed in from the initialization when new individuals are already being
streamed out the recombination ucbps component, and hence, we must guarantee
that the two populations do not get mixed. Evaluated individuals are then streamed
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into the tournament selection twrops component, and the selected individuals are
streamed into the noit (number of iterations) component which allows a population
stream to go by a given number of iterations and then diverts the population to
a secondary output port to print the final output to the console. If the finalization
criteria is not met, the selected individuals are streamed into the recombination
ucbps component. New offspring will be sent for evaluation passing through the
soed safe gate. Program 4 presents the ZigZag script implementing this flow. A
detailed description on how to implement Meandre components and write ZigZag
scripts can be found elsewhere—see [29] and http://seasr.org/meandre.

4.2 The Compact Genetic Algorithm and Hadoop

We encapsulate each iteration of the CGA as a seperate single MapReduce job. The
client accepts the commandline parameters, creates the initial probability vector
splits and submits the MapReduce job. Let the probability vector be P = {pi : pi =
Probability o f the variable(i) = 1}. Such an approach would allow us to scale over
a billion variables, if P is partitioned into m different partitions P1,P2, . . . ,Pm where
m is the number of mappers.

Map. Generation of the two individuals matches the MAP function, which has to be
computed independent of other instances. As shown in the algorithm in Listing 5,
the MAP takes a probability split Pi as input and outputs the tournamentSize
individuals splits, as well as the probability split. Also, it keeps track of the number
of ones in both the individuals and writes it to a global file in the Distributed File
System (HDFS). All the reducers, later read these values.

Reduce We implement Tournament selection without replacement. A tournament
is conducted among tournamentSize generated individuals and the winner and
the loser is selected. Then, the probability vector split is updated accordingly. A
detailed description of the reduce step can be found on Listing 6.

Optimizations After initial experimentation, we noticed that for larger problem
sizes, the serial initialization of the population takes a long time. Similar to the
optimizations used while MapReducing SGAs, we create the initial population in
a seperate MapReduce phase, in which the MAP generates the initial probability
vector and the REDUCE is the Identity Reducer.
The bits of the variables in the individual are compactly represented in an array
of long long ints and we use efficient bit operations for crossover and fitness
calculations. Also, we use long long ints to represent probabilities instead of
floating point numbers and use the more efficient integer operations.

http://seasr.org/meandre
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Listing 5 Map phase of each iteration of the CGA

procedure Map ( key , v a l u e ) :
begin

s p l i t N o := key
p r o b S p l i t A r r a y := v a l u e
Emit ( s p l i t N o , [ 0 , p r o b S p l i t A r r a y ] )
f o r k := 1$ to t o u r n a m e n t S i z e
begin

i n d i v i d u a l := n i l
ones := 0
f o r prob in p r o b S p l i t A r r a y
begin

i f Random ( 0 , 1 ) < prob
then

i n d i v i d u a l := 1
ones := ones + 1

e l s e
i n d i v i d u a l := 0

Emit ( s p l i t N o , [ k , i n d i v i d u a l ] )
Wri te toDFS ( k , ones )

end
end

end

4.3 The Extended Compact Genetic Algorithm and Meandre

As we did with the selectorecombinative genetic algorithm, and loosely following
Foster’s methodology [12], we will identify what data is going to drive our execution.
In this particular case, the relevant pieces of information used by eCGA’s model
building are the gene partitions used to compute the MPM. The greedy model-
building algorithm requires exploring a large number of possible partition merges
while building the model—being O(`3) the worst case scenario. Thus, this would
suggest that the partitions of genes should be the basic piece of data to stream. At each
step of the model building process, a stream of partitions will need to be evaluated to
compute each combined complexity score. The evaluation of each partition is also
independent of each other, further simplifying the overall design.

Figure 4 presents the four components we will use to implement a data-intensive
version of eCGA model builder. The init ecga component creates a new pop-
ulation, evaluates the individuals (using and MK deceptive trap [16] where k = 4
and d = 0.25), pushes the selected population obtained using tournament selec-
tion without replacement (s = 6), and starts streaming the initial set of gene par-
titions that require evaluation. Then, the update partition component com-
putes the combine complexity of the partition and streams that information to the
greedy ecga mb component. This component implements the greedy algorithm
that receives the evaluated partitions and decides which ones to merge. In case
that a partition merge is possible, the new set of partitions to be evaluated are
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Listing 6 Reduce phase of each iteration of the CGA

procedure I n i t i a l i z e :
begin

A l l o c a t e a n d i n i t i a l i z e ( OnesArray [ t o u r n a m e n t S i z e ] )
winner := −1
l o s e r := −1
p r o c e s s e d := 0
n := 0
f o r k :=1 to t o u r n a m e n t S i z e
begin

f o r r =1 to numReducers
do

Ones [ k ] := Ones [ k ] + ReadFromDFS ( r , k )
i f Ones [ k ] > winner
then

w i n n e r I n d e x := k
e l s e

i f Ones [ k ] < l o s e r
then

l o s e r I n d e x := k
end

end

procedure Reduce ( key , v a l u e s ) :
whi le v a l u e s . hasNext ( )
begin

s p l i t N o := $key
v a l u e [ p r o c e s s e d ] := v a l u e s . g e t V a l u e ( )
p r o c e s s e d := p r o c e s s e d + 1

end
f o r prob in v a l u e [ 0 ]
begin

i f v a l u e [ winner ] . b i t [ n ] != v a l u e [ winner ] [ n ]
then

i f v a l u e [ winner ] . b i t [ n ] = 1
then

n e w P r o b S p l i t [ n ] := v a l u e [ 0 ] + 1 / p o p u l a t i o n
e l s e

n e w P r o b S p l i t [ n ] := v a l u e [ 0 ] − 1 / p o p u l a t i o n
end
Emit ( s p l i t N o , [ 0 , n e w P r o b S p l i t ] )

end
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streamed into the update partition component. If no merger is possible, the
greedy ecga mb component pushes the final MPM model to the print model
component. Program 7 present the ZigZag script implementing the data-intensive
computing version of eCGA.

Fig. 4 Meandre’s flow for eCGA.

5 Experiments

This section presents the results obtained using the Hadoop and Meandre frameworks
to scale the proposed GAs and EDAs. The section begins presenting the results
achieved using both frameworks to speedup traditional genetic algorithms. Then it
reviews the results obtained using Hadoop to speedup cGA—more fitted to tackle
large data-volume problems width relatively easy to implement algorithms. Finally
the section concludes presenting the promising scalability results achieved using
Meandre on eCGA being, to the best of our knowledge, one of the first attempts that
has succeeded in showing that efficient parallelization of eCGA model building is
possible.

5.1 Selectorecombinative Genetic Algorithms

To illustrate the benefits of both frameworks, we implemented and tested the selec-
torecombinative genetic algorithm following the descriptions presented above.
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Listing 7 ZigZag script implementing the extended compact genetic algorithm using Meandre
components.

#
# Main i m p o r t and a l i a s e s
#

# Omi t t ed . . .

#
# Component I n s t a n c e s
#
i n i t e c g a , g r eedy ecga mb = INIT ECGA ( ) , GREEDY ECGA MB ( )
u p d a t e p a r t i t i o n s = UPDATE ECGA PARTITIONS ( )
p r i n t m o d e l , p r i n t p o p = PRINT MODEL ( ) , PRINT POP MATRIX ( )
#
# The f l o w
#
@ i n i t e c g a = i n i t e c g a ( )
@ u p d a t e p a r t = u p d a t e p a r t i t i o n s (

e c g a p a r t i t i o n c a c h e :
i n i t e c g a . e c g a p a r t i t i o n c a c h e ;

e c g a p a r t i t i o n t o u p d a t e i :
i n i t e c g a . e c g a p a r t i t i o n t o u p d a t e i ;

e c g a p a r t i t i o n t o u p d a t e j :
i n i t e c g a . e c g a p a r t i t i o n t o u p d a t e j

)
@greedy mb = greedy ecga mb (

e c g a p a r t i t i o n c a c h e :
u p d a t e p a r t . e c g a p a r t i t i o n c a c h e

)
u p d a t e p a r t i t i o n s (

e c g a p a r t i t i o n c a c h e :
greedy mb . e c g a p a r t i t i o n c a c h e ;

e c g a p a r t i t i o n t o u p d a t e i :
greedy mb . e c g a p a r t i t i o n t o u p d a t e i ;

e c g a p a r t i t i o n t o u p d a t e j :
greedy mb . e c g a p a r t i t i o n t o u p d a t e j

)
p r i n t m o d e l ( ecga mode l : greedy mb . ecga mode l )

5.1.1 Hadoop and SGAs

We implemented the simple ONEMAX problem on Hadoop (0.19)11 and ran it on
our 416 core (52 nodes) Hadoop cluster. Each node runs a two dual Intel Quad cores,
16GB RAM and 2TB hard disks. The nodes are integrated into a Distributed File
System (HDFS) yielding a potential single image storage space of 2 ·52/3 = 34.6T B
(since the replication factor of HDFS is set to 3). A detailed description can be found

11 http://hadoop.apache.org
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elsewhere12. Each node can run 5 mappers and 3 reducers in parallel. Some of the
nodes, despite being fully functional, may be slowed down due to disk contention,
network traffic, or extreme computation loads. Speculative execution is used to run
the jobs assigned to these slow nodes, on idle nodes in parallel. Whichever node
finished first, writes the output and the other speculated jobs are killed. For each
experiment, the population for the GA is set to n logn where n is the number of
variables.
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(a) Scalability of selectorecombinative genetic
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ONEMAX problem.
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Fig. 5 Results obtained using Hadoop when implementing a simple selectorecombinative genetic
algorithm

We ran two sets of experiments. In the first one, we kept the load set to 1,000
variables per mapper. As shown in Figure 5(a), the time per iteration increases initially
and then stabililizes around 75 seconds. Thus, increasing the problem size as more
resources are added does not change the iteration time. Since, each node can run
a maximum of 5 mappers, the overall map capacity is 5 ·52(nodes) = 260. Hence,
around 250 mappers, the time per iteration increases due to the lack of resources
to accommodate so many mappers. In the second set of experiments,we utilize the
maximum resources and increase the number of variables. As shown in Figure 7(b),
our implementation scales to n = 105 variables, keeping the population set to n logn.
Adding more nodes would enable us to scale to larger problem sizes. The time
per iteration increases sharply as the number of variables is increased to n = 105

as the population increases super-linearly (n logn), which is more than 16 million
individuals.

12 http://cloud.cs.illinois.edu
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5.1.2 Meandre and SGAs

We run some experiments to illustrate the properties of data-intensive computing
modeling. Unless noted otherwise, the experiments were run on an Intel 2.8GHz
Quad Core equipped with 4Gb of RAM, running Ubuntu Linux 8.0.4, and Sun JVM
1.5.0 15. The problem we solved was a relatively small OneMax [15, 16], for 5,000
bits and a population size of 10,000—details on the population sizing can be found
elsewhere [16]. The goal of the experiment was to reveal the execution profile of the
converted algorithm. Figure 6(a) presents the average time spent by each component.
Times are averaged over 20 runs, all evolving the optimal solution. The first thing to
point out is that evaluation is not the most expensive part of the execution. OneMax
is so simple, that the cost of selection and crossover dominates the execution.
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Fig. 6 Execution profile of the original data-instensive flow implementing a selectorecombinative
genetic algorithm and its automatically parallelized version of epb and ucbps components (par-
allelization degree equal to the number of available cores, 4). Times are in milliseconds and are
averages over twenty runs.

Such counter intuitive profile would be a problem is we took a traditional par-
allelization route based on master/slave configurations delegating evaluations [8]—
which works its best on the presence on costly evaluation functions. Thanks to
choosing a data-intensive computing—and Meandre’s ability to automatically par-
allelize components13—we can also automatically parallelize the costly part of the
execution: the uniform crossover14. Also, we can, at the same time parallelize the
evaluation, which in this situation may have little effect. However, the key property to
highlight is that either in this cases, or in the case of having a costly evaluation func-

13 Multiple instance of a component can be spawned to process in parallel incoming individuals.
14 Same considerations would apply in case of having a mutation component.
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tion, the underlying data-intensive flow algorithm does not need to be changed, and
component parallelization will help, for a given problem, parallelize the costly parts
of the execution profile—see Figure 6(b). Hence, the inherent nature of data-intensive
computing can help focus attention where is really needed. Also, parallelization, can
introduce new bottlenecks—see twrops times on Figure 6(b)—, which now we
could also parallelize to make such bottleneck disappear. Next section will show the
scalability benefits that this data-intensive approach can help unleash.

5.2 The Compact Genetic Algorithm and Hadoop

To better understand the behavior of the Hadoop implementation of cGA, we repeated
the two experiment sets done in the case of the Hadoop SGA implementation. For
each experiment, the population for the cGA is set to n logn where n is the number
of variables. As done previously, first we keep the load set to 200,000 variables per
mapper. As shown in Figure 7(a), the time per iteration increases initially and then
stabililizes around 75 seconds. Thus, increasing the problem size as more resources
are added does not change the iteration time. Since, each node can run a maximum
of 5 mappers, the overall map capacity is 5 ·52(nodes) = 260. Hence, around 250
mappers, the time per iteration increases due to the fact that no available resources
(mapper slots) in the Hadoop framework are available. Thus, the execution must wait
till mapper slots are released and the remaining portions can be executed, and the
whole execution completed.
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Fig. 7 Results obtained using Hadoop when implementing a the compact genetic algorithm.
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In the second set of experiments, we utilized the maximum resources and increase
the number of variables. As shown in Figure 7(b), our implementation scales to
n = 108 variables, keeping the population set to n logn.

5.3 The Extended Compact Genetic Algorithm and Meandre

We ran three different experiments. First we measure the executions profile of the
implement data-intensive eCGA. Figure 9(a) presents the average time spend in
each component over 20 runs—` = 256 and n = 100,000. All the runs lead to
learning the optimal MPM model thanks to the oversized population. Figure 9(a)
highlights the already known fact that most of the execution time of the model
building process is spent evaluating the gene partitions. Also, the initialization is
being negatively affected by the partition updates, since it is being held back since it
produces partitions much faster than they can be evaluated. This fact can be observed
on Figure 9(b). After providing four parallelized partition evaluation components,
not only the overall wall clock time drop, but also the initialization time too, since
now, the update input queues can keep up with the initial set of partitions generated.
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Fig. 8 eCGA speedup compared to the original non data-intensive computing implementation.
Figure show the speedup as a function of the number of update partitions parallelized
components available.

We repeated these experiments providing {1,2,3, and 4} parallelized upda-
te partition components and measured the overall speedup against the tradi-
tional eCGA model building implementation. Figure 8 presents the speedup results
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graphically. The first element to highlight is that, only using one update par-
tition component instance we obtained a superlinear speedup. This is the result
of few improvements on the implementation of the components, which allowed to
remove extra layers of unnecessary function calls present in the original code. Also,
the fact that partitions results are streamed into the greedy model builder adds and
extra improvement—similar to pipeline segmentation as discussed earlier and the
availability of idle cores15—by advancing computations instead of waiting for the
last partition to be calculated. The final speedup graph shows a clear linear increase
in performance as more cores are efficiently used despite resources contention when
using all the cores available. Finally, we ran the same experiment on a SGI Altix
machine with a multiprocessor NUMA architecture at the National Center for Su-
percomputing Applications (NCSA)16 and requested 16 and 32 nodes. The averaged
speedup was computed over 20 independent runs. Again, the speedup showed a linear
speedup of 14.01 and 27.96 of 16 and 32 processors. The slight drop on performance
is the results of memory contention of the NUMA interconnection architecture of the
SGI Altix machine.
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Fig. 9 Execution profile of the original data-instensive flow implementing eCGA and its automati-
cally parallelized version of its update partitions component (parallelization degree equal
to the number of available cores, 4). Times are in milliseconds and are averages of twenty runs.

15 The hardware used for this experiment did not provide a fair way to execute the data-intensive
flow using only one core. If that could have been possible, a normal linear speedup curve would
have been obtained when extra cores were added and the time of executing on one core used to
compute the speedup instead of the time of the original sequential implementation.
16 http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/SGIAltix/
TechSummary/

http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/SGIAltix/TechSummary/
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/SGIAltix/TechSummary/
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6 Related Work

Several different models like fine grained [30], coarse grained [25] and distributed [24]
models have been proposed for implementing parallel GAs. Traditionally, MPI has
been used for implementing parallel GAs. However, MPIs do not scale well on
commodity clusters where failure is the norm, not the exception. Generally, if a
node in an MPI cluster fails, the whole program is restarted. In a large cluster, a
machine is likely to fail during the execution of a long running program, and hence
fault tolerance is necessary. MapReduce [10] is a programming model that enables
the users to easily develop large-scale distributed applications. Hadoop17 is an open
source implementation of the MapReduce model. Several different implementa-
tions of MapReduce have been developed for other architectures: Phoenix [36] for
multicores, CGL-MapReduce [11] for streaming applications.

To the best of our knowledge, MRPGA [22] is the only attempt at combining
MapReduce and GAs. However, they claim that GAs cannot be directly expressed
by MapReduce, extend the model to MapReduceReduce and offer their own imple-
mentation. We point out several shortcomings: Firstly, the Map function performs
the fitness evaluation and the “ReduceReduce” does the local and global selection.
However, the bulk of the work - mutation, crossover, evaluation of the convergence
criteria and scheduling is carried out by a single co-ordinator. As shown by their
results, this approach does not scale above 32 nodes due to the inherent serial com-
ponent. Secondly, the “extension” that they propose can readily be implemented
within the traditional MapReduce model. The local reduce is equivalent to and can
be implemented within a Combiner [10]. Finally, in their mapper, reducer and
final reducer functions, they emit “de f ault key” and 1 as their values. Thus, they
do not use any characteristic of the MapReduce model - the grouping by keys or
the shuffling. The Mappers and Reducers might as well be independently executing
processes only communicating with the co-ordinator.

We take a different approach, trying to hammer the GAs to fit into the MapRe-
duce model, rather than change the MapReduce model itself. We implement GAs in
Hadoop, which is increasingly becoming the de-facto standard MapReduce imple-
mentation and used in several production environments in the industry.

7 Conclusion

In this paper we have shown that implementing evolutionary computation algo-
rithms using a data-intensive computing paradigms is possible. We have presented
step-by-step transformations for three illustrative cases—selectorecombinative ge-
netic algorithms and estimation of distribution algorithms—and reviewed some
best practices during the process. Transformations have shown that either Hadoop’s
MapReduce model, or Meandre’s semantic-driven data-intensive flows can help

17 http://hadoop.apache.org

http://hadoop.apache.org
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scale easily and transparently evolutionary computation algorithms. Moreover, our
results have also shown the inherent benefits of the underlying usage of data-intensive
computing frameworks and how, when properly engineered, these algorithms can
directly benefit from the current race on increasing the number of cores per chips
without having to change the original data-intensive flow.

Results have shown that Hadoop is an excellent choice when we have to deal with
large problems, as long as resources are available, being able to maintain iteration
times relatively constant despite the problem size. We have also shown that using
Meandre linear speedups are possible without changing the underlying algorithms
based on data-intensive computing thanks to the its inherent parallel processing.
We have also shown that such results hold for multicore architectures, but also for
multiprocessor NUMA architectures.

We are current exploring how the extended compact genetic algorithm could
be implemented using a MapReduce paradigm, as well as finishing Meandre’s
implementation of the compact genetic algorithm. Our future work is focused on
analyzing other evolutionary computation algorithms that may display different
execution profiles than the ones used in this book chapter, and what challenges they
may face when developing their data-intensive computing counterparts.
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26. Llorà, X.: E2K: evolution to knowledge. SIGEVOlution 1(3), 10–17 (2006). DOI http:
//doi.acm.org/10.1145/1181964.1181966
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