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Abstract The MapReduce model uses a barrier between the

Map and Reduce stages. This provides simplicity in both

programming and implementation. However, in many situ-

ations, this barrier hurts performance because it is overly

restrictive. Hence, we develop a method to break the bar-

rier in MapReduce in a way that improves efficiency. Care-

ful design of our barrier-less MapReduce framework results

in equivalent generality and retains ease of programming.

We motivate our case with, and experimentally study our

barrier-less techniques in, a wide variety of MapReduce ap-

plications divided into seven classes. Our experiments show

that our approach can achieve better job completion times

than a traditional MapReduce framework. This is due pri-

marily to the interleaving of I/O and computation, and for-

going disk-intensive work. We achieve a reduction in job

completion times that is 25% on average and 87% in the

best case.
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1 Introduction

Inspired by the map and reduce primitives present in func-

tional languages, Google proposed MapReduce [10]. The

MapReduce framework simplifies the development of large-

scale distributed applications on clusters of commodity ma-

chines. It has become widely popular, e.g., Google uses it

internally to process more than 20 PB per day [10]. Yahoo!,

Facebook and others use Hadoop, an open-source imple-

mentation of MapReduce [1].

The MapReduce model has become popular because a

programmer can harness the processing power of large data

centers for very large parallel tasks in a simple way. The

programmer only needs to write the logic of a Map function

and a Reduce function. This eliminates the need to imple-

ment fault-tolerance and low-level memory management in

the program; the MapReduce framework takes care of these

concerns for general programs.

The MapReduce framework divides the program execu-

tion into a Map and a Reduce stage, separated by the transfer

of data between machines in the cluster. In the first stage,

each machine in the cluster executes a Map function on a

distinct portion of the input data. The Map execution pro-

duces records that consist of a key and value. Each record

is stored on the local machine that it was created on. The

records for any given key, which are spread out on many ma-

chines, are aggregated at each Reducer for the Reduce stage.

This involves a remote data transfer between the machines

in the cluster.

In current implementations of MapReduce, the two stages

are separated by a barrier. This prevents Reduce function

computations from being executed at a machine until all

the network transfer of data from the Map stage has been



completed. The barrier ensures that all relevant input data is

available to the Reduce function before it proceeds.

In this paper, we break the barrier between stages in

MapReduce. The result is a barrier-less version of Map-

Reduce, which can have significantly improved performance.

At the same time, we take special care to maintain the sim-

plicity and generality of the MapReduce framework. To this

end, we investigate a broad set of categories of MapReduce

programs, differing in the structure and the memory usage

of the Reduce function. Based on these observations, we de-

velop memory management techniques that are general and

yet require minimal additional effort by the MapReduce pro-

grammer.

Our main contributions are as follows:

1. We present techniques for supporting general purpose

applications in a barrier-less MapReduce framework.

2. For seven different categories of MapReduce algorithms,

we show how they can be converted to their barrier-less

forms.

3. We identify and address the memory management con-

cerns that arise from removing the barrier.

4. Our experience with implementing various barrier-less

algorithms shows there is minimal additional program-

mer effort.

5. We experimentally evaluate the benefit of converting al-

gorithms to their barrier-less version. Our results show

an average improvement of 25% (and 87% in the best

case) in job completion times.

6. By reviewing the job execution, we observe that the im-

provement is due to interleaving of I/O and computation

as well as forgoing disk-intensive work.

In this paper, for concreteness, we focus on the Hadoop

framework because of its open source nature. However, our

contributions are not limited to this particular instance. The

technique of using write-local read-remote data transfer with

a stage barrier is also used in Google’s MapReduce, as well

as related parallel processing frameworks such as Dryad [18].

Barrier-less implementations of these frameworks using our

techniques should be able to reap benefits similar to the ones

in this paper.

The rest of the paper is structured as follows. We first

examine the role of the MapReduce barrier in Section 2. We

then discuss our design for breaking the barrier in Section 3.

We observe that this improves performance in many cases,

but can present a memory management problem. In Sec-

tion 4, we investigate the memory usage patterns of Map-

Reduce applications, and produce a categorization based on

the structure of the Reduce function. Based on these obser-

vations, in Section 5 we develop new techniques that are able

to manage memory for general applications while breaking

the barrier. In Section 6, we present experimental results

that show a significant improvement in Hadoop performance

when these techniques are applied. We then discuss related

work in Section 7 and finally conclude in Section 8.

2 Motivation: MapReduce Barrier

The execution of a MapReduce program is divided into a

Map stage and a Reduce stage. The MapReduce framework

writes the Map output locally at each machine and then ag-

gregates the relevant records at each Reducer by remotely

reading from the Mappers. This process of transferring data

is called the Shuffle stage. In current open source MapReduce

implementations (i.e., Hadoop), the Shuffle stage contains a

distributed barrier.

The Reducer reads the relevant records from many Map

nodes. These entries are not in a sorted order, and are buffered

at the Reducer. The barrier is reached when the Reducer has

received all Map output. The Reducer then sorts the buffered

entries, effectively grouping them together by key. Finally,

the Reduce function is applied to each group of entries with

the same key, one by one.

The barrier is useful for several reasons, most prominent

being to provide simplicity and efficiency by allowing the

Reduce function to atomically operate on all records for a

particular key. This in turn means that once a key is pro-

cessed all partial results for that key can be disposed of and

the output may be written.

However, despite these apparent advantages, we argue

that removing the barrier is, in many practical cases, much

more efficient. When we remove the barrier, execution of

our Reduce function no longer needs to wait for all records

to be remotely read and grouped by key. Instead, the Reduce

function can be immediately invoked on each input entry, as

it becomes available. This relaxation can significantly im-

prove the efficiency of the Reduce task execution.

More concretely, by removing the barrier, we eschew

two waiting intervals before the Reduce operations are ex-

ecuted: (1) the time interval between remote read of the

first and last records, and (2) the time taken for sorting the

records. Instead of waiting for remote reads to finish, our

framework interleaves the network I/O with the computation

of the Reduce function. Our framework forgoes the disk-

intensive operation of sorting records altogether for most

algorithms. Both of these waiting intervals are sensitive to

heterogeneity that is inherent in clusters. Clusters with com-

modity hardware often show differences in performance be-

tween machines, and they have oversubscribed links between

machines. The time it takes to read all records depends on

the relative speed between the Mapper nodes and the speed

of data transfer from the Mapper nodes to Reducer nodes.

This can further extend the first interval of waiting. The time

consumed by disk-intensive operations in the second inter-

val is sensitive to the relative disk speeds across each node.



Application Key sort Size of

(Reduce Classification) required partial results

Distributed Grep No O(1)
(Identity)

Sort Yes O(records)
(Sorting)

Word Count No O(keys)
(Aggregation)

k-Nearest Neighbors No O(k ∗ keys)
(Selection)

Last.fm unique listens No O(records)
(Post-reduction processing)

Genetic Algorithms No O(window size)
(Cross-key operations)

Black Scholes No O(1)
(Single Reducer Aggregation)

Table 1: Sort and Memory requirements of MapReduce

Jobs. Records and keys denote respectively, the total num-

ber of records and keys, executed at a single Reducer.

The barrier-less model removes these intervals, thus improv-

ing performance.

By removing both waiting intervals, the records in the

barrier-less model are no longer sorted in key order. Our

investigation of seven classes of MapReduce applications

summarized in Table 1 (detailed in Section 4) reveals that,

in practice, a significant number of applications do not re-

quire the full key sorting provided by the MapReduce frame-

work. The main role of sorting by key is to group records

with the same key together. Grouping is necessary in tradi-

tional MapReduce, because it requires all records for a key

to be present when the Reduce function is executed. The

barrier-less approach removes this requirement, and the Re-

duce function is run on records one by one. This approach

raises an important problem: partial results for each key

must be maintained.

Our investigation shows that the number of partial re-

sults that must be maintained differs widely across Map-

Reduce applications (see column “Size of partial results”

in Table 1). Thus, for the barrier-less model to work with

general MapReduce applications, we require techniques for

maintaining and updating these partial results. Before we

develop these techniques in detail (see Section 5), we first

describe the structure and usage of our basic framework for

barrier-less MapReduce.

3 Breaking the Barrier

In this section, we describe our implementation of barrier-

less MapReduce, and illustrate how to modify an existing

MapReduce application to be used in this framework.

3.1 Barrier-less Hadoop Implementation

We implemented barrier-less MapReduce by modifying the

open-source Hadoop implementation. The original Hadoop

implementation employs a barrier as described in the previ-

ous section. In order to break the barrier, we had to incor-

porate two primary design decisions: (1) bypass the batched

sorting mechanism, and (2) modify the invocation of the Re-

duce function so that it can be called with a single record

(instead of a key and all values corresponding to it).

Hadoop’s Shuffle stage is implemented by transferring

batches of records from Mappers to Reducers. Each Mapper

buffers its processed records. When all local processing is

finished the Mapper sorts the records by key, a step that par-

titions the records to be transferred to each Reducer. If the

buffer grows larger than the memory available, it is spilled

to disk and later merge-sorted. Each Reducer retrieves the

batch of records from each Mapper only after it has com-

pleted. When all records from every Mapper are received

by the Reducer it merge-sorts them, a step that groups all

records together.

For barrier-less MapReduce, we pipeline the record trans-

fer and Reduce execution at the single record level, instead

of batching. There are two potential benefits to pipelining.

First, we make it possible to interleave network I/O of the

record transfer with CPU computation. Second, we avoid

the need to spill to disk when the size of batched records

grows beyond memory.

In our implementation, the Reducer uses one asynchronous

thread per Mapper to retrieve records, as soon as they are

available. These records are stored into a single buffer, and a

separate thread executes the Reduce function on the records

in the buffer in a first-in first-out manner. The Reduce func-

tion called in this manner is only passed a single key/value

record, as opposed to a key and all its corresponding values

in the original Hadoop. This subtle difference in the frame-

work compared to original Hadoop changes the way applica-

tions are implemented slightly, as we show with an example

in Section 3.2.

However, these changes do not affect other aspects of the

execution of Hadoop. In other words, assignment of tasks,

fault-tolerance, scheduling, etc., are handled in the same way

as original Hadoop.

3.2 Barrier-less WordCount

As previously mentioned, when executed with barrier-less

Hadoop, the Reduce function does not have the guarantee

of atomically receiving all records for a given key. There-

fore, the application must be modified to handle records one

by one. To do this, a programmer must code, in addition to

the Map and Reduce function, a custom run function that

makes calls to the Reduce function. In the original Hadoop,



Algorithm 1 Original WordCount

function map(key, value):

// key: document name

// value: document contents

for each word in value do

Emit intermediate (word, 1)

end for

function reduce(key, values, context):

// key: a word

// values: a list of counts

result ← 0
for each v in values do

result ← result + v

end for

Write (key, result) to context

function run():

while context has more keys do

key ← current key from context

values ← current values from context

reduce(key, values, context)

end while

the run function invokes the Reduce function once per key.

For barrier-less Hadoop, the run function invokes the Re-

duce function once per entry, and the programmer addition-

ally specifies in this function how partial results are stored

and reused across Reduce invocations.

In the rest of this section, we present a concrete example

of the difference between an application coded for the orig-

inal and barrier-less MapReduce frameworks. For this, we

use the WordCount application provided with the Hadoop

distribution. The original program is shown in pseudo-code

in Algorithm 1. In the Map function, each output entry is

simply a word and a count of 1. In the Reduce function, the

number of output entries with the same key is counted. The

run function, which is part of the Hadoop framework, en-

sures that the Reduce function is called once for each key,

with all the values as input.

To run WordCount without a barrier, the programmer

has to modify the Reduce and run functions as presented

in Algorithm 2. The run function calls Reduce on each en-

try that is received. In other words, the Reduce function no

longer assumes that all values for a key are passed in at

once. This implies that the Reducer must maintain partial

results for every key it has received. For our purposes, we

use the Java implementation of Red-Black trees [16] called

TreeMap. A TreeMap can quickly access partial results while

maintaining key ordering. As a record (which is a key/value

pair) arrives, the run function reads the previous partial re-

sult, and passes it to the Reduce function. The Reduce func-

tion performs the computation, and stores the new result

back into place. Once there are no more records and all the

Reduce invocations have completed, the output is generated

by the run function.

Algorithm 2 Barrier-less WordCount

Changes made to Algorithm 1 are boldfaced and italicized.

function reduce(key, values, context):

// key: a word

// values: a list of counts

result ← 0
for each v in values do

result ← result + v

end for

Insert (key, result) in the TreeMap

function run():

Create a new TreeMap

while context has more keys do

key ← current key from context

values ← current values from context

if TreeMap does not contain key then

Insert (key, 0) in the TreeMap

end if

reduce(key, values, context)

end while

// After all the reduce invocations are done

for each (key, value) in TreeMap do

Write (key, value) to context

end for

Figure 1 shows the system-wide progress of the Word-

Count program with and without a barrier on the same clus-

ter. (Details of the experimental setup are provided in Sec-

tion 6.) The y-axis represents the number of CPU cores exe-

cuting at each stage. In the original MapReduce, we can see

the barrier in the delay between the Map tasks finishing at

155 seconds and the Reduce function invocations beginning

at 170 seconds. In the barrier-less version though, the com-

bined Shuffle and Reduce stage begins at 50 seconds, when

the first Mappers begin to complete. We refer to the time

gap between when the first Mappers complete and when the

shuffle stage completes as the mapper slack. It is indicative

of the extra time taken by the buffering and sorting parts of

the Shuffle stage.

In barrier-less MapReduce, there is no distinct barrier

between Shuffle and Reduce. Instead, each Reducer works

on individual records as the Shuffle process pulls them in.

Because these two stages are combined and interleaved, we

see an improvement in job completion time. We observe that

the job finishes within 160 seconds, or only 10 seconds after

the final Map task completes. This is a 30% improvement in

the job completion time for WordCount. This benefit arises

because we can perform meaningful work in the form of Re-

duce operations during the mapper slack time, in which the

barrier version is performing the shuffle/sort operation. At

the same time, since our modifications were non-invasive,

the correctness and the completeness of the MapReduce ex-

ecution is not compromised.

Finally, we observe that depending on the application,

the amount of memory consumed at each Reducer by par-

tial results may vary. In the worst case the number of par-
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Fig. 1: Progress of MapReduce which performs a word

count on a 3GB Wikipedia data set

tial results may become very large and cause the Reducer to

run out of memory. This motivates the development of new

memory management techniques that can prevent overflows

and we address this in Section 5.

4 Classifying Reduce Operations

In order to understand the general implications of breaking

the barrier in the general case, we need to understand con-

crete MapReduce applications. Hence, we performed a case

study of a wide variety of published MapReduce applica-

tions and investigated how to break the barrier for each of

them. The applications we studied were the following: Map-

Reduce example benchmarks [10]; machine learning bench-

marks [8]; statistical machine translation [7], [12]; optimiza-

tion algorithms [24]; finance algorithms [6]; and similarity

scoring [13].

We classified the Reduce operations performed in these

applications. The result is a list of seven types: Identity,

Sorting, Aggregation, Selection, Post-reduction processing,

Cross-key operations and Single reducer aggregations. This

information is summarized in Table 1. In the rest of this sec-

tion, we present our classification. For each type, we discuss

a representative application and how partial results must be

stored and updated during execution in barrier-less Map-

Reduce.

4.1 Identity

Identity operations are Reduce operations that perform little

to no explicit work. An example of an Identity operation is a

Distributed Grep application [10]. The Map function emits

a line of text if it matches a pattern. The Reduce function is

merely used to write the final output.

Identity operations are the simplest kind of Reduce op-

eration. They do not require the Reduce input to be sorted

by key. There is also no need to keep partial results for any

keys, because the results are written immediately as final

output. Hence, there is no difference between implementing

this operation for original and for barrier-less MapReduce.

4.2 Sorting

This is the only prominent kind of operation we found that

requires a strict ordering on the output keys. For sorting op-

erations, the Reduce operation must write output that is in

a sorted order. This is a popular application, e.g., a sort im-

plemented in Hadoop holds the record for the fastest sort of

100TB of data [20].

The implementation of a sorting operation is dependent

on whether or not a barrier is present. With a barrier, the im-

plementation of a sorting operation is identical to an Identity

operation. The MapReduce framework itself, rather than the

Reduce operation, does the job of sorting the output by key.

If sorting by value is also required, a secondary sort oper-

ation is easily performed using custom grouping and com-

parison operations. However, this is not the case when the

barrier is broken.

Effect of no barrier: To implement a sorting operation

without a barrier, the data must be sorted in the Reduce func-

tion, typically through the use of an ordered data structure

like a Red-Black tree. None of the partial results can be emit-

ted until all the values have been seen and completely sorted.

Thus, in the worst case each Reducer must maintain a data

structure of size O(records), the total number of records

executed at the Reducer.

4.3 Aggregation

We classify aggregation operations as those that are com-

mutative and distributive – they include addition and multi-

plication. They perform an operation on all the values asso-

ciated with a key, and emit an aggregated value as output.

Since the operations are commutative, the ordering of the

keys is not required.



An example is the WordCount application from Section 3.

For each key, the entries that contain the count of the key are

summed up into the aggregate word count. In the original

version, the Reduce function is invoked with a key and all of

its associated values. Hence, it can aggregate them and emit

the final count immediately.

Effect of no barrier: For the barrier-less version, a run-

ning aggregate result must be maintained for each key. Thus,

the Reducers must maintain O(keys) state for storing the

partial results. The Reducer outputs the results only when

all the keys and their associated values have been processed.

4.4 Selection

Selection operations are those that select a subset of the val-

ues associated with a key. Examples include finding the max,

min, median, or top k values.

With a barrier present, while sorting keys the framework

can also allow the developers to sort values as well (e.g.,

Hadoop’s secondary sort). Given such an ordering, the Re-

duce function can trivially select the values of interest. For

example, when finding a minimum, the Reducer can select

and output the first value for every key.

In our barrier-less implementation, we bypass the sort

operation, so these operations must be performed on a run-

ning basis. For example, a running minimum (or minimum k

values) can be kept and updated as new values arrive. There-

fore, the barrier-less version of a selection operation main-

tains a per-key context with the currently selected values,

and emits the final output once all values have been pro-

cessed.

To investigate selection algorithms, we implemented a

k−Nearest Neighbors algorithm. This is a classic algorithm

that reads in two sets of data, a training set and an experi-

mental set, and finds the k values in the training set closest

to each value in the experimental set. It was first presented

in [15] and is often used in statistical analysis applications,

such as finding pairwise similarity [13].

The distance between an experimental value (E) and the

training value (T ) is defined as the absolute value of their

difference (|E − V |). It is necessary to compare each exper-

imental value to every training value. The barrier version’s

Map function emits a tuple (E, |E − V |) for the key, and

an integer T for the value. A secondary sort is performed,

sorting by the |E − V | value in the key, but grouping by E.

Then, in the Reducer, the first k values are emitted.

Effect of no barrier: The barrier-less version maintains

a k-value-per-key context, stored as a TreeMap (a Red-Black

tree implementation in Java) of linked lists. The Mapper

emits an integer E as the key and a tuple (T, |E − V |) as

the value. There is no need to emit a tuple as before, since a

sort is not performed. Now, for each key, the Reducer main-

tains a size-k ordered linked list, and decides if the most re-

cently received (E, |E − V |) tuple belongs in the list, based

on the |E − V | value within the tuple. If this is the case, it

is inserted into the appropriate location within the ordered

linked list, evicting the tuple with the largest distance if the

linked list size exceeds k. Once all value tuples have been

processed for a key, the contents of the linked list (namely

the top k E values), are emitted.

4.5 Post-reduction processing

In post-reducer processing operations, the Reduce operation

works in two steps. First, the entries with a key are processed

and inserted into a temporary data structure. When all the

entries for a key have been processed, a post-processing op-

eration is applied on the temporary data structure to get the

final output for the key.

An example application is the one used at Last.fm to

track the number of unique users that listen to each track of

music in the service [26]. Entries of the input data consists of

a userId and trackId (and other information). The trackId is

the key of the record. The number of unique users per track

is counted in two steps. In the processing stage, the userId of

each record is added into a data structure that does not hold

duplicate values e.g., the code presented in [26] uses a Java

Set. Then the post-processing step counts the total number

of entries in the data structure.

Effect of no barrier: With a barrier, the temporary data

structure will grow with the maximum number of records

with a certain key. This in itself could be a large amount

of data. However, when the barrier is broken, the structure

can grow even larger. The temporary data structure for each

key must be maintained, in a partial result structure such as

a TreeMap. The total amount of partial results can grow to

O(records).

4.6 Cross-key operations

Typically a Reduce function processes its keys independent

of the other Reduce functions. However, in cross key oper-

ations, the Reduce function can depend on other keys, for

example the previous k keys. This can be implemented by

maintaining a window of k previously seen keys, operating

over them and emitting the final output. Since Reduce does

not depend on other keys, it can terminate after emitting its

output.

To investigate cross-key operations, we use the example

of genetic algorithms; in particular we use [24]. Each indi-

vidual (I) is represented as a key and the Mapper computes

the fitness (F ) of each individual and emits the tuple (I, F ).

The Reducer maintains a window of previously seen indi-

viduals and when the window is full, performs the selection



and crossover operations of the genetic algorithm and finally

emits the individuals as output.

Effect of no barrier: Only partial results for the window

containing the previous k keys need to be maintained. When

a partial result is removed from the window, it is written

as a final result. Thus, the memory requirement for storing

partial results is O(k).

4.7 Single reducer aggregation

Single reducer aggregations involve the use of a single Re-

ducer to aggregate the outputs from multiple Mappers. This

is generally used for determining measures of central ten-

dency or dispersion where global knowledge of all the Map

outputs is required.

We study single reducer aggregations through a Monte

Carlo simulation that computes the Black-Scholes option

pricing value ([6], [14]). Each Mapper performs complex

floating point operations like exponentiation according to

the Black-Scholes formula and the Reducer computes the

average and standard deviation of all the values computed

by the Mappers.

Effect of no barrier: The average operation can be in-

crementally computed by maintaining a running sum of the

values and performing a division at the end. In order to cal-

culate the standard deviation along with the average, the

Mapper emits the square of the value along with the value

itself. The Reducer maintains a running sum of the squares

of the values along with a running sum and a count of the

values. Let x1, x2, . . . , xN be the values whose mean is x̄.

The standard deviation is computed as follows:

σ =

√

√

√

√

1

N

(

N
∑
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)

=

√

√

√

√

1

N

(

N
∑

i=1

x2

i
− 2x̄

N
∑

i=1

xi + Nx̄2

)

=

√

√

√

√

1

N

(

N
∑

i=1

x2

i

)
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As only the running sums have to be saved, only O(1)
memory is required for storing the partial results at the Re-

ducer. Since summations are commutative operations, order-

ing of the keys is not required.

5 Managing Memory Overflows

As noted in Section 3, an important change in our barrier-

less MapReduce framework is the need to manage the stor-

age of partial results. Depending on the category of the Re-

duce operation involved (see Section 4), the partial result

memory complexity can be up to O(records), growing to

the number of records executed at the Reducer. For large

datasets, which MapReduce caters to, this can quickly over-

flow the in-memory capacity at a server. For instance, the

line “In-memory TreeMap” in Figure 2 shows the amount

of heap space used by a Reducer in a MapReduce job which

performs a WordCount on a 16GB dataset. The used mem-

ory increased, until the Reducer ran out of available heap

space. An OutOfMemory exception was thrown and the job

was killed around 80s.

In order to address these memory overflow problems, we

explore two possible memory management solutions: a disk

spill and merge scheme and an off-the-shelf disk-spilling

key/value store.

5.1 Disk Spill and Merge

In the disk spill and merge scheme, we define a memory

threshold. If memory usage for partial results reaches this

threshold, it is spilled to a newly created file on disk. When

all records have been processed, the spilled files are merged

using a merge function defined by the programmer.

During the course of execution at a Reducer, the mem-

ory threshold may be reached multiple times, creating many

spill files. Thus, partial results for a single key may be spilled

onto multiple different spill files. After all invocations of the

Reduce function at a Reducer are finished, all the partial re-

sults for a single key must be merged together.

The disk spill and merge scheme is designed to allow the

merge to be performed efficiently. Partial results are sorted

by key as they are moved to a spill file. Then the merge phase

merges all the partial results for each key in a straightfor-

ward manner, similar to an external merge-sort. For every

local spill file, the first partial result is loaded into the mem-

ory and stored in a buffer. Spill files containing the globally

lowest key are then repeatedly read from until the lowest

key’s partial results are all loaded into memory. Once all

partial results for a key have been merged, the result can be

written as the final output. The next globally lowest key is

found and processed in the same fashion, until all keys have

been processed.

The method of merging results of each key depends on

the application and the data structure that stores the partial

results. Thus, the programmer supplies the merge function.

This function is functionally similar to the combiner method

of MapReduce (as specified in [10]), but may be customized

if more complex methods are required for maintaining par-

tial results.

The effect of using Disk Spill and Merge is shown in

Figure 2. In our implementation, we maintain a count of

records in the partial result data structure to estimate the

memory usage. We spill to and read from disk by using
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Fig. 2: WordCount over a 16GB dataset with 10 Reducers.

Having the complete TreeMap in memory leads to out of

memory error. Spill and merge uses less memory and the job

completes successfully. Partial results threshold is 240 MB.

Java’s serialize/deserialize interface. The line “Spill and Merge”

shows that the partial results data structure is kept below the

memory threshold.

5.2 Disk spilling key/value store

Instead of flushing the entire contents of the memory to a

file on the disk, the partial results can be maintained in a

key/value store that has the capability of spilling to disk.

Every invocation of the Reduce function fetches the pre-

vious partial result from the key/value store, processes the

current input and then stores the result back into the key/-

value store. This read-modify-update cycle is carried out for

all the inputs to the Reducer. The key/value store is capa-

ble of evicting some records out of memory and spilling to

disk according to policies like Least Recently Used (LRU),

whenever it runs out of memory.

We experimented with different key/value stores such

as BerkeleyDB [19], Tokyo Cabinet [4] and MongoDB [3].

Among these, BerkeleyDB (Java Edition) exhibited the high-

est raw read and write throughput in terms of operations

per second. Hence, we chose it as the key/value system to

run our experiments. We configured BerkeleyDB for per-

formance without guaranteeing fault-tolerance of the data,

because the MapReduce framework takes care of these con-

cerns. The transaction log buffers were maintained in mem-

ory and only written to stable storage when BerkeleyDB de-

termines that they are full or it is out of main memory.

5.3 Qualitative Comparison

The disk spill and merge approach has the advantage of

avoiding the thrashing of in-memory data, unlike BerkeleyDB’s

caching scheme. Similarly, because it is intended specifi-

cally for managing partial result storage, it is more lightweight

and efficient than a generic disk-spillable key/value store.

On the other hand, it will not be able to take advantage of

any prior knowledge of the distribution of keys, as it treats

each of them equally. Therefore, in situations where certain

keys are significantly more common than others, unneces-

sary spilling may occur. BerkeleyDB, like most key/value

stores, performs caching and pre-fetching of common en-

tries, in order to minimize reading from disk, and can there-

fore exploit temporal locality. We compare these approaches

quantitatively in Section 6.5.

6 Experimental Evaluation

In this section, we evaluate the performance characteristics

of our implementation of barrier-less MapReduce. Our im-

plementation is based on Hadoop 0.20. We measured the

improvement over the original Hadoop 0.20 for the seven

classes of applications described in Section 4.

We performed our experiments on 16 nodes from the

Cloud Computing Testbed (CCT) [2] running 64 bit Cent

OS 5.4 operating system. Each node has dual Intel Quad

cores, 16GB RAM and a single 1TB hard disk. The nodes

are connected together with a Gigabit Ethernet switch. A

single node was configured to be the JobTracker and the Na-

meNode and the other 15 nodes were used as slaves. The

replication factor of the distributed file system was set to 3

and the default chunksize was 64MB. The number of Map-

pers and Reducers per node was set to 4, in order to utilize

all the 8 cores on each node.

6.1 Improvement with Input Data Size

We experimentally evaluated the improvements in the job

completion times for six applications in the following sub-

sections. These applications correspond to the seven classes

described in Section 4. (We omit the Identity class because

the original and barrier-less versions are identical.) Figure 3

shows the job completion times for various benchmarks with

and without barrier.

6.1.1 Sort

Our barrier-less sort is implemented in a similar manner to

our WordCount implementation, in order to avoid consum-

ing memory for duplicate keys. We use a Red-Black tree im-

plementation (Java TreeMap) to store a per-key count value.

This count value is incremented, when a duplicate key is

encountered. When we output the results, we emit the dupli-

cates of the key count number of times.
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Fig. 3: Comparison of different benchmarks: Sort, WordCount(WC), k-Nearest Neighbor(KNN) and Post Processing (PP)

with and without barrier, with increasing dataset sizes.

This is a degenerate case, because in the original Map-

Reduce, both Mappers and Reducers perform no work. The

comparison between the original and the barrier-less Map-

Reduce versions becomes a competition between the two

sorting mechanisms. In this case the original merge sort is

faster than performing insertions into a Red-Black Tree. As

a result, we observed slight slowdowns in the barrier-less

version, up to 9% in the 8GB case, and going down to 2%

for the 16GB case.

6.1.2 WordCount

The WordCount application involves the aggregation oper-

ation of summing the count of the word occurrences. De-

spite the relatively small amount of non-sorting work per-

formed in this benchmark, we observed that the barrier-less

approach results in an average of 15% decrease in job com-

pletion times. Although the work performed in the barrier-

less WordCount is essentially the same as in the barrier-less

Sort, WordCount has more room for improvement due to the

extra aggregation work the original version performs. This

shows that, although Reducers performing no work may not

see gains from our barrier-less system, even work as sim-

ple as aggregation can see notable gains. However, this im-

provement did not increase proportionally with the size of

the dataset, since writing the output to the distributed file

system is the bottleneck.

6.1.3 k-Nearest Neighbors

This application uses a selection operator which selects the

top k values from the input keys. For our experiments, we

used a k value of 10. Our data values ranged from 0 to

1,000,000. The barrier-less version of k-Nearest Neighbors

must perform extra work in maintaining a sorted list of the
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Fig. 4: Genetic Algorithms(GA) and Black Scholes(BS)

with and without barrier, varying the number of Mappers.

top k values, which is done automatically by the Shuffle

stage in the original framework.

Nevertheless, we observed an average decrease of 18%

in job completion times. This improvement slowly increased

as the dataset size was increased, since the number of Map

rounds increased, thereby increasing mapper slack. In addi-

tion, the experimental values must be unique while training

set values need not be. Therefore, the number of keys did

not grow at the same rate as the number of values, resulting

in less per-key data. This nature of the data affects perfor-

mance as it results in relatively lesser memory overhead for

the barrier-less version.

6.1.4 Last.fm Unique Listens

The calculation of unique listens uses post-reduction pro-

cessing. The application counts the unique number of users
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that listen to a track. We ran our experiments on a dataset

that generated track listens, uniformly at random across 50

users and 5000 tracks. For varying sizes of input data, we

consistently observed a 20% decrease in job completion time.

6.1.5 Genetic Algorithms

Genetic algorithms are used to exemplify cross-key opera-

tions. The genetic algorithm required no change to perform

barrier-less calculation, as no per-key data had to be main-

tained. The algorithm in both the original and the barrier-

less versions only need to maintain O(window size) keys,

since each key is independent of the others.

In this experiment (Figure 4), we executed a genetic al-

gorithm with a population of 50 million individuals per map-

per and varied the dataset size by increasing the number of

mappers. The number of Reducers was set to 40. We ob-

served that the performance is limited by the time spent in

writing intermediate data to the local disk or the output to

the distributed filesystem. This resulted in a benefit of about

15%, which stays relatively constant as the dataset size in-

creases.

6.1.6 Black-Scholes Options Pricing

The calculation of options pricing using Black-Scholes in-

volves using a single reducer aggregation to calculate the

mean and standard deviation. In this experiment, we exe-

cuted a million iterations of the Black-Scholes algorithm per

mapper. Black-Scholes, similar to genetic algorithms, has

a constant amount of memory in use at the Reducer (O(1)
with relation to the input dataset size). However, unlike ge-

netic algorithms, the output data is also constant in size since

it is just a single running average and standard deviation.

Figure 4 shows that our approach resulted in an average ben-

efit of about 56%, which continued to increase as the number

of iterations increased. The maximum improvement in com-

pletion time observed was 87%. This is the best performance

of our approach across all application classes.

6.1.7 Comparing Improvement Across Applications

Black-Scholes showed the largest improvement, due to the

O(1) memory overhead and output dataset size. The other

benchmarks had improvements that stayed consistent around

the 20% mark, which was the common case due to the lim-

itations imposed by mapper slack and time spent writing to

disk. In addition, sort was observed to be our worst case with

a small performance loss on average.

6.2 Performance Improvement Breakdown

In order to better understand the reason behind the improve-

ment in overall completion time for barrier-less MapReduce,

we take an in-depth look at the execution of two of the ap-

plications, WordCount and Genetic Algorithm.

In Figure 6, we plot a CDF of the duration of each task in

the Reduce stage, for both original MapReduce and barrier-

less MapReduce. The task duration denotes the duration from

when the first byte is received at the Reduce task from a

Map task, to when the Reduce task emits its final byte of

output. We make two observations about the improvement

in overall completion time. First, the median Reduce task

completion time is smaller for barrier-less MapReduce. For

WordCount, up to the 95th percentile, the gap is between

20 to 30 seconds, while for Genetic Algorithm, up to the

90th percentile, the gap is between less than 5, to around

10 seconds. Secondly, the original MapReduce contains out-

lier Reduce tasks that have significantly longer completion

times than other Reduce tasks. In contrast, we do not see

any significant outliers in barrier-less MapReduce. Due to

this, there is a large gap between the Reduce tasks with the

longest completion times: the gap for WordCount is more

than 40 seconds, while for Genetic Algorithm it is almost 25

seconds.

These factors are also visibly present in Figure 7, where

we plot the end time for each Reduce task, i.e., when the

final byte of output is emitted, counting from the start of the

entire MapReduce job.

Figures 8 and 9 plot the start and duration for each indi-

vidual Map and Reduce task. For original MapReduce, the

Reduce stage is separated into Shuffle, Sort (not to be con-

fused with the Sort application), and Reduce function exe-

cution. Shuffle execution is dominated by network I/O, Sort

is dominated by disk I/O, and Reduce is dominated by CPU

computation. From the plot, we observe two main causes

of the dissimilarity in Reduce task duration times. First, the
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contrast in median completion time is because barrier-less

MapReduce is able to successfully interleave both disk I/O

and CPU computation together with network I/O. Thus, the

duration of the entire barrier-less Reduce task is close to

the duration of Shuffle for the original Reduce task. Sec-

ond, Sort appears to be the main cause for the outliers of the

original Reduce – this is likely caused by heterogeneity of

disk I/O performance within the cluster.

The variation in Reduce execution time for Genetic Al-

gorithm is likely due to the involved computation being more

complex. We observe high variance in the duration for both

Map and Reduce function execution for the original tasks.

This effect is also observed in the barrier-less setting, where

the end times of the Reduce tasks in Genetic Algorithm have

more variance than WordCount.

Thus, we conclude that for the Genetic Algorithm and

WordCount applications, any outliers arising from our set-

ting are eliminated by using a barrier-less approach.

6.3 Improvement with Number of Reducers

In order to understand the sensitivity to the number of Re-

ducers, we varied the Reducer count in Figure 5 and ob-

served the improvement as the count rose from 30 to 70

(which is 10 more than the number of available CPU cores

for Reducers). This illustrates the effect of applications or

systems with an irregular amount of Reducers, for example

if nodes fail in the middle of computation.

Our results show that although job completion time de-

creased as the compute utilization increased (as the num-

ber of Reducers reached the compute capacity of 60), our

improvement over the barrier version decreased somewhat.

When the number of Reducers surpassed the amount of com-

pute resources available (70 Reducers running on 60 cores),

the job completion time increased, but our improvement also

increased.

The reason for our scheme having a larger improvement

when the system is underutilized (for example when there

are only 30 Reducers), is that each Reducer has to shuffle

respectively more data than in the fully utilized case. This

means that the shuffle time is larger, and the mapper slack,

during which the barrier-less version can perform meaning-

ful work, is also larger. As the utilization becomes more

full, the mapper slack decreases, limiting, but not removing,

the benefit gained from breaking the barrier. On the other

hand, once the system becomes over-saturated (the 70 Re-

ducer case), a new round of Reducers is needed, which must

themselves undergo a shuffle stage, once again increasing

the mapper slack. In other words, the benefit of switching

to a barrier-less framework is closely tied to the amount of

mapper slack in the runtime.

6.4 Cluster Heterogeneity

In these experiments, we look at the effect of cluster hetero-

geneity on barrier-less MapReduce and compare it to orig-

inal MapReduce. Some heterogeneity is already present in

our cluster despite it being composed of machines with orig-

inally identical specifications. We go a step further and in-

duce more heterogeneity, by overloading machines with more

Mappers and Reducers. Our 16 machine cluster has 1 master

and 15 workers. We vary the number of worker machines n

(from 15 to 13) with the following configuration: n− 1 ma-

chines each have 4 map and 4 reduce slots while the nth

machine has (16−n) ∗ 4 map and (16−n) ∗ 4 reduce slots.

This causes the nth machine to be overloaded.

Figure 10 shows the execution time of WordCount with

15, 14, and 13 worker machines, i.e., when the designated

machine is configured with 4, 8, and 12 Mappers and an
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Fig. 11: Lanes plot of WordCount processing 7.5GB on 13 heterogeneous machines.

equal number of Reducers respectively. This mimics, for

example, a virtualized cluster where heterogeneity can be

caused by many virtual machines being run on a single ma-

chine. When the input dataset processed is 7.5GB, the entire

intermediate data is kept in memory for both barrier-less and

original MapReduce. We see a large difference (54%) in ex-

ecution time in the case of the 13 worker machines. We ob-

serve that increasing the heterogeneity from 14 to 13 worker

machines leads to 58% worse performance for original Map-

Reduce, but only 27% worse performance for barrier-less

MapReduce.

In order to understand the cause for this improvement,

Figure 11 shows the start and duration of each task when

WordCount is run on 13 worker machines. In this configura-

tion, one of the machines is configured with 12 Mappers and

12 Reducers, while the other 12 machines are configured

with 4 Mappers and 4 Reducers. We observe that the dura-

tion of the map tasks on the overloaded machines is longer

in original MapReduce. This is because the overloaded ma-

chines have too little available memory per task, and thus

the Mappers must buffer their records on disk. These Map

outliers, coupled with the barrier, force the Reduce function

execution to be delayed. In contrast, barrier-less Mappers

are not required to buffer all records because they transfer

records immediately. Thus, disk I/O time is saved resulting

in the overloaded Map outliers finishing earlier than their

original counterparts. Also, because there is no barrier, the

Reduce function execution is interleaved with the network

transfer, resulting in the combined Shuffle and Reduce fin-

ishing shortly after the final outlier Mapper. As a result of

the combination of these factors, we observe that the entire

job completes in our barrier-less MapReduce implementa-

tion before even the Map stage is completed in original Map-

Reduce.

When the input dataset size is increased to 55GB, the

amount of intermediate data processed per Reducer increases

above the available memory limit and the disk spill and merge

technique is used in the barrier-less version, while the orig-



Application
Lines of code (LOC)

Original Barrier-less % increase

Sort 28 95 240%

WordCount 73 88 20%

k-Nearest Neighbors 195 208 10%

Post Processing 73 91 25%

Genetic Algorithm 532 533 0%

Black-Scholes 251 252 0%

Table 2: Programmer effort, in terms of LOC required to

convert MapReduce applications to their barrier-less ver-

sions.

inal version uses an external MergeSort. In this case, we

observe that the difference (27%) is smaller when the disk

spill and merge technique is used instead of keeping the in-

termediate results entirely in memory, because disk I/O is

required.

Thus, we conclude that our barrier-less implementation

reduces variation in task completion times and thus helps in

reducing the performance degradation due to some types of

heterogeneity.

6.5 Memory Management Techniques

We compared the different memory management techniques

described in Section 5. Figure 12 shows a plot of the job

completion times for WordCount with and without a barrier,

while varying the number of Reducers. The disk spill and

merge scheme performed slightly worse than storing the par-

tial results in memory. However, as the number of Reducers

was decreased below 25, the in-memory technique resulted

in an out of memory exception and the job was killed. The

spill and merge technique continued to perform better than

the original MapReduce. BerkeleyDB on the other hand,

performed poorly on the WordCount. Even though we could

observe about 30,000 inserts per second into the database,

this was not enough throughput to keep up with the millions

of small records handled at each Reducer. This result shows

that off-the-shelf key/value stores may not be a suitable op-

tion for MapReduce workloads.

Figure 13 shows a comparison with increasing dataset

size. It can be seen that as the dataset increases, both the disk

spill and merge, and the in-memory barrier-less versions,

outperformed the original version. Again, the BerkeleyDB

key/value store can not keep up with the high frequency of

record accesses.

6.6 Programmer Effort

Table 2 summarizes the programmer effort required, in terms

of lines of code, to convert the MapReduce applications into

their barrier-less counterparts. The code for sorting in the

original case is very short due to the use of the Identity Map-

per and the Identity Reducer, since the framework does the

job of sorting. However, we had to add more functionality

in the Reduce function of the barrier-less version. Word-

Count, k-Nearest Neighbors and Post Processing required

small changes to compute and update the partial results. For

Black-Scholes and the genetic algorithm, the only change

required was that a flag for barrier-less execution be turned

on.

7 Related Work

MapReduce has been widely used for processing large data

because of its simple model that is applicable to “embar-

rassingly parallel” problems – such as log processing. Cur-

rent research looks to push MapReduce by using it to solve

harder problems. These include machine learning [8], sta-

tistical machine translation [7] [12], optimization [24], fi-

nance [6], and similarity scoring [13]. MapReduce is a log-

ical choice because it allows the problems to be solved on

a loosely coupled set of machines, with less effort than pro-

ducing custom parallel processing code. However, MapReduce

does not always give the most efficient parallel processing

implementation. In this paper, we looked at the stage barrier

in MapReduce and showed how breaking it may result in

making MapReduce more efficient for general MapReduce

problems.

We are not the first to investigate the transition between

the Map and Reduce stages. In MapReduce Online [9], data

is pushed by Mappers and merge-sorted by Reducers at a

finer granularity. This has two main advantages. First, this

effectively overlaps (pipelines) the stages, resulting in faster

runtime. Our work can similarly benefit from such an op-

timization. Second, this allows early partial results (snap-

shots) to be computed to approximate the correct result. Each

snapshot must be computed independently of others and fur-

thermore, previous snapshots do not help in computing sub-

sequent results. In contrast, by storing partial results we are

able to decrease the time needed to compute the actual final

result.

Similar techniques like incremental updates of materi-

alized views [17], hash-based joins [11], etc. have been ex-

plored by the parallel database community. However, such

techniques can only be applied to a select group of opera-

tors, while our technique can be applied to many arbitrary

MapReduce programs. Also, MapReduce programs benefit

from scalability and fault tolerance at the cost of some per-

formance overhead as compared to parallel DBs. There is

a considerable amount of debate on MapReduce vs paral-

lel databases [23]. Pavlo et. al [21] perform a comparison

of MapReduce and parallel databases for large scale data

analysis and demonstrate the overhead of materializing the

intermediate data in MapReduce.
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Fig. 12: WordCount with different memory management

techniques with increasing number of Reducers.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  5  10  15  20  25

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Size of input data set (in GB)

BerkeleyDB
With barrier
Spill/merge
In-memory

Fig. 13: WordCount with different memory management

techniques with increasing dataset size.

Improving the efficiency of MapReduce has been of re-

cent interest to the systems community. Much of the re-

search presented has required changes to the MapReduce

API [27]. Other work has aimed to be completely transpar-

ent to the programmer [28]. Our work is a combination of

both categories. We have preserved the baseline MapReduce

API, while empowering the programmer to improve perfor-

mance by relaxing assumptions in the Reduce function.

Dryad [18] is a distributed platform that has been de-

veloped at Microsoft to provide large-scale, parallel, fault-

tolerant execution of processing tasks. The techniques in this

paper can likely be applied to break the barrier in a similar

way to the MapReduce barrier. Because Dryad is a closed

system, we were not able to make modifications to apply

these techniques.

There has been recent interest in dealing with outliers

in MapReduce clusters. The Longest Approximate Time to

End (LATE) scheduling algorithm [28] was designed to pro-

vide better performance in the face of outliers. The algo-

rithm shows improved performance in virtualized, heteroge-

neous clusters. The Mantri system [5] is also designed to tar-

get MapReduce outliers to improve performance. The sys-

tem uses real-time progress reports to detect outliers early in

their lifetime, and takes corrective action depending on the

cause of the outlier and the available resources in the cluster.

While not the main goal, our barrier-less implementation is

shown to reduce outliers and their effect on job completion

time, in homogeneous conditions and under some types of

heterogeneity.

8 Conclusion

This paper demonstrated that general purpose MapReduce

frameworks without a barrier are feasible, and they can re-

sult in significant performance benefits. By intelligently man-

aging memory and identifying which forms of Reduce func-

tions see the most benefit, our experiments with Hadoop

demonstrate speedups of up to 87% for well-suited applica-

tions, and an average of 25% for more typical applications.

This is because our barrier-less MapReduce framework al-

lows the interleaving of network I/O and computation while

keeping disk usage to a minimum. At the same time, our

approach preserves the fault tolerance of the original Map-

Reduce model, and has similar ease of programming. Our

work opens up new avenues. Memoization, an optimization

similar to DryadInc [22] becomes feasible in the barrier-less

model.
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