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Abstract Cloud computing applications require a scalable, elastic and fault tol-

erant storage system. We survey how storage systems have evolved from the tra-

ditional distributed filesystems, peer-to-peer storage systems and how these ideas

have been synthesized in current cloud computing storage systems. Then, we de-

scribe how metadata management can be improved for a file system built to support

large scale data-intensive applications. We implement Ring File System (RFS), that

uses a single hop Distributed Hash Table, to manage file metadata and a traditional

client-server model for managing the actual data. Our solution does not have a sin-

gle point of failure, since the metadata is replicated. The number of files that can

be stored and the throughput of metadata operations scales linearly with the num-

ber of servers. We compare our solution against two open source implementations

of the Google File System (GFS): HDFS and KFS and show that it performs bet-

ter in terms of fault tolerance, scalability and throughput. We envision that similar

ideas from peer-to-peer systems can be applied to other large scale cloud computing

storage systems.

1 Introduction

Persistent storage is a fundamental abstraction in computing. It consists of a named

set of data items that come into existence through explicit creation, persist through

temporary failures of the system, until they are explicitly deleted. Sharing of data in

distributed systems has become pervasive as these systems have grown in scale in

terms of number of machines and the amount of data stored.
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The phenomenal growth of web services in the past decade has resulted in many

Internet companies needing to perform large scale data analysis such as indexing

the contents of the billions of websites or analyzing terabytes of traffic logs to mine

usage patterns. A study into the economics of distributed computing [1] published

in 2008, revealed that the cost of transferring data across the network is relatively

high. Hence moving computation near the data is a more efficient computing model

and several large scale, data-intensive application frameworks [2, 3] exemplify this

model.

The growing size of the datacenter also means that hardware failures occur more

frequently making such data analysis much harder. A recent presentation about a

typical Google datacenter reported that up to 5% of disk drives fail each year and

that every server restarts at least twice a year due to software or hardware issues [4].

With the size of digital data doubling every 18 months [5], it is also essential that

applications are designed to scale and meet the growing demands.

To deal with these challenges, there has been a lot of work on building large

scale distributed file systems. Distributed data storage has been identified as one of

the challenges in cloud computing [6]. An efficient distributed file system needs to:

1. provide large bandwidth for data access from multiple concurrent jobs

2. operate reliably amidst hardware failures

3. be able to scale to many millions or billions of files and thousands of machines

The Google File System (GFS) [7] was proposed to meet the above requirements

and has since been cloned in open source projects such as Hadoop Distributed File

System (HDFS)1 and Kosmos File System (KFS)2 that are used by companies such

as Yahoo, Facebook, Amazon, Baidu, etc.

The GFS architecture was picked for its simplicity and works well for hundreds

of terabytes with few millions of files [8]. One of the direct implications of storing

all the metadata in memory is that the size of metadata is limited by the memory

available. A typical GFS master is capable of handling a few thousand operations per

second [8] but when massively parallel applications like a MapReduce [2] job with

many thousand mappers need to open a number of files, the GFS master becomes

overloaded. Though the probability of a single server failing in a datacenter is low

and the GFS master is continuously monitored, it still remains a single point of

failure for the system. With storage requirements growing to petabytes, there is a

need for distributing the metadata storage to more than one server.

Having multiple servers to handle failure would increase the overall reliability of

the system and reduce the downtime visible to clients. As datacenters grow to ac-

commodate many thousands of machines in one location, distributing the metadata

operations among multiple servers would be necessary to increase the throughput.

Handling metadata operations efficiently is an important aspect of the file system

as they constitute up to half of file system workloads [9]. While I/O bandwidth

available for a distributed file system can be increased by adding more data stor-

1 http://hadoop.apache.org/
2 http://kosmosfs.sourceforge.net/
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age servers, scaling metadata management involves dealing with consistency issues

across replicated servers.

Peer-to-peer storage systems [10], studied previously, provide decentralized con-

trol and tolerance to failures in untrusted-Internet scale environments. Grid Com-

puting has been suggested as a potential environment for peer-to-peer ideas [11].

Similarly we believe that large scale cloud computing applications could benefit by

adopting peer-to-peer system designs. In this work, we address the above mentioned

limitations and present the design of Ring File System (RFS), a distributed file sys-

tem for large scale data-intensive applications. In RFS, the metadata is distributed

among multiple replicas connected using a Distributed Hash Table (DHT). This de-

sign provides better fault tolerance and scalability while ensuring a high throughput

for metadata operations from multiple clients.

The major contributions of our work include:

1. A metadata storage architecture that provides fault tolerance, improved through-

put and increased scalability for the file system.

2. Studying the impact of the proposed design through analysis and simulations.

3. Implementing and deploying RFS on a 16-node cluster and comparison with

HDFS and KFS.

The rest of this chapter is organized as follows: We first provide a background on

two popular traditional distributed file systems NFS and AFS in Section 2. Then, we

discuss how peer-to-peer system ideas have been used to design distributed storage

systems in Section 3. Section 4 discusses how current cloud storage systems are

designed based on the amalgamation of ideas from traditional and P2P-based file

systems. We describe the design of our system, RFS, in Section 5 and analyze its

implications in Section 6. We then demonstrate the scalability and fault tolerance

of our design through simulations followed by implementation results in Section 7.

Section 8 summarizes the metadata management techniques in existing distributed

file system and their limitations. We discuss possible future work and conclude with

Section 9.

2 Traditional Distributed Filesystems

In this section, we examine two traditional distributed filesystems NFS and AFS

and focus on their design goals and consistency mechanisms. Traditional distributed

filesystems are typically geared towards providing sharing capabilities among mul-

tiple (human) users under a common administrative domain.
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2.1 NFS

The NFS [12] protocol has been an industry standard since its introduction by Sun

Microsystems in the 1980s. It allows remote clients to mount file systems over the

network and interact with those file systems as if they were mounted locally. Al-

though the first implementation of NFS was in a Unix environment, NFS is now im-

plemented within several different OS environments. File manipulation primitives

supported by NFS are: read, write, create a file or directory, remove a file or direc-

tory. The NFS protocol is designed to be machine, operating system, network archi-

tecture, and transport protocol independent. This independence is achieved through

the use of Remote Procedure Call (RPC) primitives built on top of an eXternal Data

Representation (XDR).

NFS uses the Virtual file system (VFS) layer to handle local and remote files.

VFS provides a standard file system interface and allows NFS to hide the difference

between accessing local or remote file systems.

NFS is a stateless protocol, i.e., the server does not maintain the state of files –

there are no open or close primitives in NFS. Hence, each client request contains

all the necessary information for the server to complete the request and the server

responds fully to every client’s request without being aware of the conditions under

which the client is making the request. Only the client knows the state of a file for

which an operation is requested. If the server and/or the client maintains state, the

failure of a client, server or the network is difficult to recover from.

NFS uses the mount protocol to access remote files, which establishes a local

name for remote files. Thus, the users access remote files using local names, while

the OS takes care of the mapping to remote names. Most NFS implementations

provide session semantics for performance reasons – no changes are visible to other

processes until the file is closed. Using local caches greatly improves performance

at the cost of consistency and reliability. Different implementations use different

caching policies. Sun’s implementation allows cache data to be stable for up to 30

seconds. Applications can use locks in order to ensure consistency.

Unlike earlier versions, the NFS version 4 protocol supports traditional file access

while integrating support for file locking and the mount protocol. In addition, sup-

port for strong security (and its negotiation), compound operations, client caching,

and internationalization have been added. Client checks cache validity when the file

is opened. Modified data is written back to the server when the file is closed.

Parallel NFS (pNFS) is a part of the NFS v4.1 standard that allows clients to

access storage devices directly and in parallel. The pNFS architecture eliminates

the scalability and performance issues associated with NFS servers in earlier de-

ployments. This is achieved by the separation of data and metadata, and moving the

metadata server out of the data path.
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2.2 AFS

The Andrew File System (AFS) was developed as a part of the Andrew project at

Carnegie Mellon University. AFS is designed to allow users with workstations to

share data easily. The design of AFS consists two components: a set of centralized

file servers and a communication network, called Vice, and a client process named

Venus that runs on every workstation. The distributed file system is mounted as a

single tree in every workstation and Venus communicates with Vice to open files

and manage the local cache.

The two main design goals of AFS are scalability and security. Scalability is

achieved by caching relevant information in the clients to support a large number

of clients per server. In the first version of AFS, clients cached the pathname prefix

information and directed requests to the appropriate server. Additionally the file

cache used in AFS-1 was pessimistic and verified if the cache was up to date every

time a file was opened.

AFS-2 was designed to improve the performance and overcome some of the ad-

ministrative difficulties found in AFS-1. The cache coherence protocol in AFS-2

assumes that the cache was valid unless notified by a callback. AFS-2 also intro-

duces the notion of having data volumes to eliminate the static mapping from files

to servers. Volumes consist of a partial subtree and many volumes are contained in

a single disk partition. Furthermore, using volumes helps the design of other fea-

tures like read-only snapshots, backups and per-user disk quotas. AFS-2 was used

for around four years at CMU and experiments showed that its performance was

better than NFS [13].

The third version of AFS was motivated by the need to support multiple adminis-

trative domains. Such a design could support a federation of cells but present users

with a single unified namespace. AFS was also commercialized during this time

and the development of AFS-3 was continued at Transarc Corporation in 1989. The

currently available implementation of AFS is a community supported distribution

named OpenAFS.

AFS has also played an important role in shaping the design of other distributed

file system. Coda a highly-available distributed file system, also developed at CMU,

is a descendant of AFS-2. The design of NFSv4 published in 2003 was also heavily

influenced by AFS.

3 P2P-based Storage Systems

The need for sharing files over the Internet led to the birth of peer-to-peer systems

like Napster and Gnutella. In this section, we describe the design of two storage

systems based on Distributed Hash Tables (DHTs).
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3.1 OceanStore

OceanStore [10] is a global persistent data store that aims to provide a consistent,

highly available storage utility. There are two differentiating design goals:

1. the ability to be constructed from untrusted infrastructure; and

2. aggressive promiscuous caching

OceanStore assumes that the infrastructure is fundamentally untrusted – any

server may crash without warning, leak information to third parties or be compro-

mised. OceanStore caches data promiscuously anywhere, anytime, in order to pro-

vide faster access and robustness to network partitions. Although aggressive caching

complicates data coherence and location, it provides greater flexibility to optimize

locality and trades off consistency for availability. It also helps to reduce network

congestion by localizing access traffic. Promiscuous caching requires redundancy

and cryptographic techniques to ensure the integrity and authenticity of the data.

OceanStore employs a Byzantine-fault tolerant commit protocol to provide strong

consistency across replicas. The OceanStore API also allows applications to weaken

their consistency restrictions in exchange for higher performance and availability.

A version-based archival storage system provides durability. OceanStore stores

each version of a data object in a permanent, read-only form, which is encoded with

an erasure code and spread over hundreds or thousands of servers. A small subset

of the encoded fragments are sufficient to reconstruct the archived object; only a

global-scale disaster could disable enough machines to destroy the archived object.

The OceanStore introspection layer adapts the system to improve performance

and fault tolerance. Internal event monitors collect and analyze information such

as usage patterns, network activity, and resource availability. OceanStore can then

adapt to regional outages and denial of service attacks, pro-actively migrate data

towards areas of use and maintain sufficiently high levels of data redundancy.

OceanStore objects are identified by a globally unique identifier (GUID), which

is the secure hash (for e.g., SHA1 [14]) of the owner’s key and a human readable

name. This scheme allows servers to verify and object’s owner efficiently and facil-

itates access checks and resource accounting.

OceanStore uses Tapestry [15] to store and locate objects. Tapestry is a scalable

overlay network, built on TCP/IP, that frees the OceanStore implementation from

worrying about the location of resources. Each message sent through Tapestry is

addressed with a GUID rather than an IP address; Tapestry routes the message to

a physical host containing a resource with that GUID. Further, Tapestry is local-

ity aware: if there are several resources with the same GUID, it locates (with high

probability) one that is among the closest to the message source.
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3.2 PAST

PAST is a large scale, decentralized, persistent, peer-to-peer storage system that

aims to provide high availability and scalability. PAST is composed of nodes con-

nected to the Internet and an overlay routing network among the nodes is constructed

using Pastry [16]. PAST supports three operations:

1. Insert: Stores a given file a k different locations in the PAST network. k rep-

resents the number of replicas created and can be chosen by the user. The file

identifier is generated using a SHA-1 hash of the file name, the owner’s public

key and a random salt to ensure that they are unique. k nodes which have an

identifier closest to the fileId are selected to store the node.

2. Lookup: Retrieves a copy of the file from the nearest available replica.

3. Reclaim: Reclaims the storage of k copies of the file but does not guarantee that

the file is no longer available.

Since node identifiers and file identifiers are uniformly distributed in their do-

mains, the number of files stored by each node is roughly balanced. However, due

to variation in the size of the inserted files and the capacity of each PAST node there

could be storage imbalances in the system.

There are two schemes proposed to handle such imbalances. In the first scheme,

called replica diversion, if one of the k closest nodes to the given fileId does not

have enough space to store the file, a node from the leafset is chosen and a pointer

is maintained in the original node. To handle failures, this pointer is also replicated.

If no suitable node is found for replica diversion the entire request is reverted and

the client is forced to choose a different fileId by using a different random salt. This

scheme is called file diversion and is a costly operation. Simulations show that file

diversion is required only for up to 4% of the requests when the leaf set size is 32.

The replication of a file in PAST, to k different locations, is to ensure high avail-

ability. However, some popular files could require more than k replicas to minimize

latency and improve performance. PAST uses any space unused in the nodes to

cache files which are frequently accessed. When a file is routed through a node dur-

ing an insert or lookup operation, if the size of the file is less than a fraction of

the available free space, it is cached. The cached copies of a file are maintained in

addition to the k replicas and are evicted when space is required for a new file.

4 Cloud Storage Systems

Motivated by the need for processing terabytes of data generated by systems, cloud

storage systems need to provide high performance at large scale. In this section, we

examine two cloud computing storage systems.
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4.1 Google File System

Around 2000, Google designed and implemented the Google File System (GFS) [7]

to provide support for large, distributed, data-intensive applications. One of the re-

quirements was to run on cheap commodity hardware and deliver good aggregate

throughput to a large number of clients. GFS is designed for storing a modest (mil-

lions) number of huge files. It is optimized for large streaming reads and writes.

Though small random reads and writes are supported, it is a non-goal to perform

them efficiently.

The GFS architecture comprises of a single GFS master server which stores the

file metadata of the file system and multiple slaves known as chunkservers which

store the data. The GFS master stores the metadata, which consists of information

such as file names, size, directory structure and block locations, in memory. The

chunkservers periodically send heartbeat messages to the master to report their state

and get instructions.

Files are divided into chunks (usually 64 MB in size) and the GFS master man-

ages the placement and data-layout among the various chunkservers. A large chunk

size reduces the overhead of the client interacting with the master to find out its

location. For reliability, each chunk is replicated on multiple (by default three)

chunkservers.

Having a single master simplifies the design and enables the master to make so-

phisticated chunk placement and replication decisions using global knowledge. It’s

involvement in reads and writes is minimized so that it does not become a bottle-

neck. Clients never read and write file data through the master. Instead, a client asks

the master which chunkservers it should contact. Clients cache this information (for

a limited time) and directly communicate with the chunkservers for subsequent op-

erations.

GFS supports a relaxed consistency model that is simple and efficient to imple-

ment at scale. File namespace mutations at the master are guaranteed to be atomic.

Record append causes data to be appended atomically at least once even in the pres-

ence of concurrent mutations. Since clients cache chunk locations, they may read

stale data. However, this window is limited by the cache entry’s timeout and the

next open of the file. Data corruption (like bit rot) is detected through checksum-

ming by the chunkservers.

4.2 Dynamo

Dynamo [17] is a distributed key-value store used at Amazon and is primarily built

to replace relational databases with a key-value store having eventual consistency.

Dynamo uses a synthesis of well known techniques to achieve the goals of scal-

ability and availability. It is designed taking churn into account: storage nodes can

be added or removed without requiring any manual partitioning or redistribution.

Data is partitioned and replicated using consistent hashing, and consistency is pro-
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vided using versioning. Vector clocks with reconciliation during reads are used to

provide high availability for writes. Consistency among replicas during failures is

maintained by a quorum-like replica synchronization protocol. Dynamo uses a gos-

sip based distributed failure detection and membership protocol.

The basic consistent hashing algorithm assigns a random position for each node

on the ring. This can lead to non-uniform data and load distribution and is oblivious

to heterogeneity. Hence, Dynamo uses “virtual nodes”: a virtual node looks like a

single node in the system, but each node can be responsible for more than one virtual

node. When a new node is added to the system, it is assigned multiple positions in

the ring.

Dynamo provides eventual consistency, which allows for updates to be propa-

gated to all replicas asynchronously. A write request can return to the client, before

the update has been applied at all the replicas, which can result in scenarios where

a subsequent read operation may return stale data. In the absence of failures, there

is a bound on the update propagation times. However under certain failures (like

network partitions), updates may not propagate to all replicas for a long time. Dy-

namo shows that an eventually consistent storage system can be a building block for

highly available applications.

5 RFS Design

In this section, we present the design of Ring File System (RFS), a distributed file

system for large scale data-intensive applications. In RFS, the metadata is distributed

among multiple replicas connected using a Distributed Hash Table (DHT). This de-

sign provides better fault tolerance and scalability while ensuring a high throughput

for metadata operations from multiple clients.

Our architecture consists of three types of nodes: metaservers, chunkservers and

clients as shown in the Figure 1. The metaservers store the metadata of the file sys-

tem whereas the chunkservers store the actual contents of the file. Every metaserver

has information about the locations of all the other metaservers in the file system.

Thus, the metaservers are organized in a single hop Distributed Hash Table (DHT).

Each metaserver has an identifier which is obtained by hashing its MAC address.

Chunkservers are grouped into multiple cells and each cell communicates with

a single metaserver. This grouping can be performed in two ways. The chunkserver

can compute a hash of its MAC address and connect to the metaserver that is its

successor in the DHT. This makes the system more self adaptive since the file system

is symmetric with respect to each metaserver. The alternative is to configure each

chunkserver to connect to a particular metaserver alone. This gives more control

over the mapping of chunkservers to metaservers and can be useful in configuring

geographically distributed cells each having its own metaserver.

The clients distribute the metadata for the files and directories over the DHT by

computing a hash of the parent path present in the file operation. Using the parent

path implies that the metadata for all the files in a given directory is present at
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the same metaserver. This makes listing the contents of a directory efficient and is

commonly used by MapReduce [2] and other cloud computing applications.

cell 0

C1

M1 M2

M3

Mm-1

M0

DHT of Metaservers

C2 ... Cn

cell 1

C1 C2 ... Cn

K

(1) (2)

(3)
(4)

(5)(6)

...

Fig. 1 Architecture of RingFS

5.1 Normal Operation

We demonstrate the steps involved in the creation of a file, when there are no failures

in the system. The sequence of operations shown in Figure 1 are:

1. Client wishes to create a file named

/dir1/dir2/filename. It computes a hash of the parent path, /dir1/dir2, to determine

that it has to contact metaserver M0 for this file operation.

2. Client issues a create request to this metaserver which adds a record to its metat-

able and allocates space for the file in Cell 0.

3. Before returning the response back to the client, M0 sends a replication request

to r of its successors, M1,M2, · · · ,Mr in the DHT to perform the same operation

on their replica metatable.

4. All of the successor metaservers send replies to M0. Synchronous replication is

necessary to ensure consistency in the event of failures of metaservers.

5. M0 sends back the response to the client.

6. Client then contacts the chunkserver and sends the actual file contents.

7. Chunkserver stores the file contents.

Thus, in all r metadata Remote Procedure Calls (RPCs) are needed for a write op-

eration. If multiple clients try to create a file or write to the same file, consistency

is ensured by the fact that these mutable operations are serialized at the primary

metaserver for that file.

The read operation is similarly performed by using the hash of the parent path

to determine the metaserver to contact. This metaserver directly replies with the

metadata information of the file and the location of the chunks. The client then
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communicates directly with the chunkservers to read the contents of the file. Thus,

read operations need a single metadata RPC.

5.2 Failure and Recovery

Fig. 2 Tolerating metaserver failures

Let us now consider a case now where metaserver M0 has failed. The chunkservers

in cell 0, detect the failure through heartbeat messages and connect to the next server

M1 in the DHT. When a client wishes to create a file its connection is now handled

by M1 in place of M0. We replicate the metadata to r successive servers for this

request. M1 also allocates space for the file in cell 0 and manages the layout and

replication for the chunkservers in cell 0.

Once M0 recovers, it sends a request to its neighboring metaservers M1,M2, · · · ,Mr

to obtain the latest version of the metadata. On receipt of this request, M1 sends the

metadata which belongs to M0 and also closes the connection with the chunkservers

in cell 0. The chunkservers now reconnect to M0 which takes over the layout man-

agement for this cell and verifies the file chunks based on the latest metadata version

obtained. Also, Mr lazily deletes the (r+1)th copy of the metadata. Thus, our design

guarantees strict consistency through the use of synchronous replication. In order to

withstand the failure of a machine or a rack in a datacenter, a suitable number of

replicas can be chosen using techniques from Carbonite [18].

If instead, Mk, one of the r successors of M0 fails in step 3, then M0 retries

the replication request a fixed number of times. In the mean time, the underlying

DHT stabilization protocol updates the routing table and Mk+1 handles the requests

directed to the namespace previously serviced by Mk. If M0 is unable to replicate

the metadata to r successors, then it sends an error message back to the client.
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6 Analysis

In this section, we present a mathematical analysis comparing the design of GFS

and RFS with respect to the scalability, throughput followed by failure analysis.

m : Number of metaservers

R,W : Baseline Read and Write throughputs

r : Number of times the metadata is replicated

Metric GFS RFS

Metaserver failures that can be tolerated 0 r−1

RPCs required for a read 1 1

RPCs required for a write 1 r

Metadata throughput for reads R R ·m

Metadata throughput for writes W W ·m/r

Table 1 Analytical comparison of GFS and RFS.

6.1 Design Analysis

Let the total number of machines in the system be n. In GFS, there is exactly 1

metaserver and the remaining n−1 machines are chunkservers that store the actual

data. Since there is only one metaserver, the metadata is not replicated and the file

system cannot survive the crash of the metaserver.

In RFS, we have m metaservers that distribute the metadata r times. RFS can thus

survive the crash of r − 1 metaservers. Although a single Remote Procedure Call

(RPC) is enough for the lookup using a hash of the path, r RPCs are needed for the

creation of the file, since the metadata has to be replicated to r other servers. Since

m metaservers can handle the read operations for different files, the read metadata

throughput is m times that of GFS. Similarly, the write metadata throughput is m/r

times that of GFS, since it is distributed over m metaservers, but replicated r times.

This analysis is summarized in Table 1.

6.2 Failure Analysis

Failures are assumed to be independent. This assumption is reasonable because we

have only tens of metaservers and they are distributed across racks and potentially

different clusters. We ignore the failure of chunkservers in this analysis since it has

the same effect on both the designs and simplifies our analysis. Let f = 1/MT BF
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be the probability that the meta server fails in a given time, and let Rg be the time

required to recover it. The file system is unavailable for Rg · f of the time. If GFS

is deployed with a hot standby master replica, GFS is unavailable for Rg · f 2 of the

time, when both of them fail. For example, if the master server fails once a month

and it takes 6 hours for it to recover, then the file system availability with a single

master is 99.18% and increases to 99.99% with a hot standby.

Let m be the number of metaservers in our system, r be the number of times the

metadata is replicated, f be the probability that a given server fails in a given time t

and Rr be the time required to recover it. Since the recovery time of a metaserver is

proportional to the amount of metadata stored on it and we assume that the metadata

is replicated r times, Rr will be roughly equal to r ·Rg/n. The probability that any r

consecutive metaservers in the ring go down is m f r(1− f )m−r. If we have m = 10

metaservers, r = 3 copies of the metadata and MT BF is 30 days, then this proba-

bility is 0.47%. However, a portion of our file system is unavailable if and only if

all the replicated metaservers go down within the recovery time of each other. This

happens with a probability of Fr = m · f ·
(

f ·Rr

t

)r−1

· (1− f )m−r, assuming that the

failures are equally distributed over time. The file system is unavailable for Fr ·Rr of

the time. Continuing with the example and substituting appropriate values, we find

that the recovery time would be 1.8 hours and the availability is 99.9994%.

7 Experiments

In this section, we present experimental results obtained from our prototype im-

plementation of RFS. Our implementation is based on KFS and has modified data

structures for metadata management and the ability for metaservers to recover from

failures by communicating with its replicas. To study the behavior on large networks

of nodes, we also implemented a simulation environment.

All experiments were performed on sixteen 8-core HP DL160 (Intel Xeon

2.66GHz CPUs) with 16GB of main memory, running CentOS 5.4. The MapReduce

implementation used was Hadoop 0.20.1 and was executed using Sun’s Java SDK

1.6.0. We compare our results against Hadoop Distributed File System (HDFS) that

accompanied the Hadoop 0.20.1 release and Kosmos File system (KFS) 0.4. For the

HDFS and KFS experiments, a single server is configured as the metaserver and

the other 15 nodes as chunkservers. RFS is configured with 3 metaservers and 5

chunkservers connecting to each of them. We replicate the metadata three times in

our experiments.
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7.1 Simulation

Fault tolerance of a design is difficult to measure without a large scale deployment.

Hence, we chose to model the failures that occur in datacenters using a discrete

iterative simulation. Each metaserver is assumed to have a constant and independent

failure probability.

The results show that RFS has better fault tolerance than the single master (GFS)

design. In the case of GFS, if the metaserver fails, the whole file system is unavail-

able and the number of successful lookups is 0 till it recovers after some time. In

RFS, we configure 10 metaservers and each fails independently. The metadata is

replicated on the two successor metaservers. Only a part of the file system is un-

available only when three successive metaservers fail. Figure 3 shows a plot of the

CDF of the number of successful lookups for GFS and RFS for different probabili-

ties of failure. As the failure probability increases, the number of successful lookups

decreases. Less than 10% of the lookups fail in RFS in all the cases.

7.2 Fault Tolerance

The second experiment demonstrates the fault tolerance of our implementation. A

client sends 150 metadata operations per second and the number of successful op-

erations is plotted over time for GFS, KFS and RFS in Figure 4. HDFS achieves

a steady state throughput, but when the metaserver is killed, the complete file sys-

tem become unavailable. Around t = 110s, the metaserver is restarted and it recovers

from its checkpointed state and replays the logs of operations that couldn’t be check-
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pointed. The spike during the recovery happens because the metaserver buffers the

requests till it is recovering and batches them together. A similar trend is observed in

the case of KFS, in which we kill the metaserver at t = 70s and restart it at t = 140s.
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Fig. 4 Fault tolerance of HDFS, KFS and RFS

For testing the fault tolerance of RFS, we kill one of the three metaservers at

t = 20s and it does not lead to any decline in the throughput of successful operations.

At t = 30s, we kill another metaserver, leaving just one metaserver leading to a drop

in the throughput. At t = 60s, we restart the failed metaserver and the throughput

stabilizes to its steady state.

7.3 Throughput

The third experiment demonstrates the metadata throughput performance. A multi-

threaded client is configured to spawn a new thread and perform read and write

metadata operations at the appropriate frequency to achieve the target qps. We then

measure how many operations complete successfully each second and use this to

compute the server’s capacity. Figure 5 shows the load graph comparison for HDFS,

KFS and RFS. The throughput of RFS is roughly twice that of HDFS and KFS and

though the experiment was conducted with 3 metaservers, the speed is slightly lesser

due to the replication overhead. Also, the performance of HDFS and KFS are quite

similar and RFS with no metadata replication has the same performance as KFS.
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7.4 MapReduce Performance
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We ran a simple MapReduce application that counts the number of words on a

Wikipedia dataset and varied the input dataset size from 2GB to 16GB. We mea-

sured the time taken for the job to compute on all three file system and a plot of

the same is shown in Figure 6. We observed that for a smaller dataset the overhead
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of replicating the metadata increased the time taken to run the job, but on larger

datasets the running times were almost the same for KFS and RFS.

8 Comparison with Related Work

Metadata management has been implemented in file systems such as NFS and

AFS [13] by statically partitioning the directory hierarchy to different servers. This,

however, requires an administrator to assign directory subtrees to each server but

enables clients to know easily which servers have the metadata for a give file name.

Techniques of hashing a file name or the parent directory name to locate a server

have been previously discussed in file systems such as Vesta [19] and Lustre [20].

Ceph [21], a petabyte scale file system, uses a dynamic metadata distribution scheme

where subtrees are migrated when the load on a server increases. Hashing schemes

have been found to be inefficient while trying to satisfy POSIX directory access

semantics as this would involve contacting more than one server. However studies

have shown that most cloud computing applications do not require strict POSIX se-

mantics [7] and with efficient caching of metadata on the clients, the performance

overhead can be overcome.

8.1 Peer-to-Peer File systems

File systems such as PAST [22] and CFS [23] have been built on top of DHTs like

Pastry [16] and Chord [24], but they concentrate on storage management in a peer-

to-peer system with immutable files. Ivy [25] is a read/write peer-to-peer file system

which uses logging and DHash. A more exhaustive survey of peer-to-peer storage

techniques for distributed file systems can be found here [26].

Our work differs from these existing file systems in two aspects: (1) Consis-

tency of metadata is crucial in a distributed file system deployed in a datacenter

and our design provides stricter consistency guarantees than these systems through

synchronous replication. (2) Existing peer-to-peer file systems place blocks ran-

domly, while some can exploit locality. Our system can implement more sophis-

ticated placement policies (e.g: placing blocks on the closest and the least loaded

server), since the group of servers which store the metadata have global information

about the file system.

8.2 Distributed Key-value Stores

Recently, there have been some efforts in deploying peer-to-peer like systems in

distributed key-value stores used in datacenters. Cassandra [27] is a distributed key-
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value store that has been widely used and provides clients with a simple data model

and eventual consistency guarantees. Cassandra provides a fully distributed design

like Dynamo with a column-family based data model like Bigtable [28]. Key-value

stores are often useful for low latency access to small objects that can tolerate even-

tual consistency guarantees. RingFS on the other hand, tries to address the problems

associated with storing the metadata for large files in a hierarchical file system and

provides stronger consistency guarantees.

9 Conclusion

Today’s cloud computing storage systems need to be scalable, elastic and fault tol-

erant. We surveyed how storage systems have evolved from traditional distributed

filesystems (NFS and AFS) and peer-to-peer storage systems (OceanStore and

PAST), and how these ideas have been synthesized in current cloud computing stor-

age systems (GFS and Dynamo).

We presented and evaluated RFS, a scalable, fault-tolerant and high throughput

file system that is well suited for large scale data-intensive applications. RFS can

tolerate the failure of multiple metaservers and it can handle a large number of

files. The number of files that can be stored in RFS and the throughput of metadata

operations scales linearly with the number of servers. RFS performs better than

HDFS and KFS in terms of fault tolerance, scalability and throughput.

Peer-to-peer systems are decentralized and self-organizing. Thus, they are attrac-

tive for datacenters built with commodity components with high failure rates, espe-

cially as the size of datacenters increases. We have shown how using a single-hop

Distributed Hash Table to manage its metadata from peer-to-peer systems can be

combined together with the traditional client server model for managing the actual

data. We envision that more ideas from peer-to-peer systems research can be applied

for building systems that scale to large datacenters with hundreds of thousands of

machines distributed at multiple sites.
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