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Problem Definition and Approach

MapReduce applications used for processing petabytes
of data across the enterprise

Controlling the allocation of resources in shared
MapReduce environments is a key challenge

Many users require job completion time guarantees
Existing schedulers do not support SLOs
In order to achieve SLOs, we need to answer:

How long will the job take given x% resources?

ow much resources are required to complete the job

Different amounts of resources can lead to drastically
different job executions
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Job Profiles

Job Profiles compactly summarize performance
metrics of different stages collected from logs that are

independent of job execution style

independent of application’s input dataset size
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MapReduce Performance Model

Two main stages: map and reduce stages
Map stage duration depends :
N,, -- the number of map tasks

Sy -- the number of map slot

Reduce stage duration depends on:
Ny -- the number of reduce tasks

Sk -- the number of reduce slots

Reduce stage consists of : Thi¥ = Mayg - g—M
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Shuffle/sort phase
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Predicting Job Completion Times

Job profiles are stable (within 20%) across different job
executions with varied inputs and number of allocated slots.

Workload: WikiTrends, WordCount, Sort, Bayes, TF-IDF, Twitter

Actual Predicted avg Predicted Max

B
O -
S Measured completion
O 1500 : : .
a time is within 10% of the
c c
= 1000 predicted average
£

500

0
Sept256,256 c)cl|:61,,128 Sept64,128

120

For a given MapReduce application and number of
map/reduce slots, what is the completion time?

Inverse question: Given a deadline, how many
map/reduce slots need to be allocated to finish within
the deadline?

Hadoop uses greedy task assignment for scheduling

Our approach: Bounds-based Makespan model for
greedy task assignment

Let N tasks be processed by k slots. Let avg and max be
the average and maximum duration of the n tasks resp.

The job makespanisatleast T, = n.avg/k
The job makespan at most T, = (n-1).avg/k + max

Solving the Inverse Problem

Given number of

(/ map/reduce tasks
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Find the number of map and reduce slots (S,,, Sg)
such that S,,+Sgis minimum
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