
 Two main stages: map and reduce stages

 Map stage duration depends :

 NM -- the number of map tasks

 SM -- the number of map slot

 Reduce stage duration depends on:

 NR -- the number of reduce tasks

 SR -- the number of reduce slots

 Reduce stage consists of :

 Shuffle/sort phase

 Reduce phase

 Job Profiles compactly summarize performance 
metrics of different stages collected from logs that are

 independent of job execution style

 independent of application’s input dataset size
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ARIA: Automated Resource Inference and Allocation 
for MapReduce Environments*  

 MapReduce applications used for processing petabytes
of data across the enterprise

 Controlling the allocation of resources in shared 
MapReduce environments is a key challenge

 Many users require job completion time guarantees

 Existing schedulers do not support SLOs

 In order to achieve SLOs, we need to answer:

 How long will the job take given x% resources?

 How much resources are required to complete the job 
within a given deadline?

 Different amounts of resources can lead to drastically 
different job executions

 For a given MapReduce application and number of 
map/reduce slots, what is the completion time?

 Inverse question: Given a deadline, how many 
map/reduce slots need to be allocated to finish within 
the deadline?

 Hadoop uses greedy task assignment for scheduling

 Our approach: Bounds-based Makespan model for 
greedy task assignment

 Let n tasks be processed by k slots. Let avg and max be 
the average and maximum duration of the n tasks resp.

 The job makespan is at least Tlow = n.avg/k

 The job makespan at most Tup = (n-1).avg/k + max
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 Job profiles are stable (within 10%) across different job 
executions with  varied inputs and number of allocated slots.

 Workload: WikiTrends, WordCount, Sort, Bayes, TF-IDF, Twitter
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Find (SM, SR) using 
Lagrange multipliers

* "ARIA: Automatic Resource Inference and Allocation for MapReduce Environments",  Abhishek Verma, Ludmila Cherkasova and Roy H. Campbell, International Conference on Autonomic Computing (ICAC) 2011.

Given number of  
map/reduce  tasks

Find the number of map and  reduce slots (SM, SR) 
such that   SM+SR is minimum

Job completion 
times are within 8%

of their deadlines

Deadlines are missed 
only under high load

Measured completion 
time is within 10% of the 

predicted average
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